
Spartan Engineer

MIN 2.8 1958

VOLUME 11 NUMBER 3 MARCH, 1958 PRICE 25¢

Here's the alma mater of 200,000 successful grads

More than 1900 chemicals have been found in coal, and over 200,000 different products are made from them—products like plastics, synthetic rubber, synthetic fibers, and resins. There's still more to come. Only a fraction of the 1900 chemicals in coal are currently used commercially.

Today, United States Steel and other producers of coal chemicals continue to study coal, its structure, and its future potential as a source of basic chemicals.

Why, you may ask, are we so interested in chemicals when our principal business is steel? The reason is that it's just good business. In producing coke for our steel-making operations, we also produce chemicals. Thus we are always interested in anything, and *anybody*, that will help to advance the technology of these related products, improve their quality, and in general reduce the over-all cost of manufacture and provide better products and better service for our customers.

It s a big job and we need a lot of good people to do it-physicists, chemists, geologists, all kinds of en-

gineers-people with *your* training, If you want to explore the earth's surface for ore, delve into the commercial use of coal chemicals, help rocket designers solve new problems with new steels, there might well be a place for you at United States Steel. Write for our booklet, "Paths of O_{PP}ortunity"-United States Steel, Personnel Division, Room 2801, 525 William Penn Place, Pittsburgh 30, Pa.

Modern chemistry is creating exciting new horizons that challenge the inventive minds of both scientist and student. Product synthesis, by bold adaptation of natural resources to our way of life, has pushed the frontiers of chemistry far beyond its early promises.

As the chemical industry forges ahead, inventing new processes and producing new materials which assure the progress and comfort of our society, research and development soar to new heights. Imaginative exploration advances under chemists and chemical engineers. New and greater production facilities are created. Many more engineers of all kinds tackle the complex tasks of building new plants or designing new processes to expand and perfect the many operations of this evergrowing industry.

Yes, today's chemistry is a fascinating world. Filled with exciting accomplishments and possibilities, it attracts young men and women of vision who will give the industry the inspiring leadership of tomorrow.

Write our Director of College Relations for a copy of our new booklet "Opportunities For College Trained People With The Dow Chemical Company". And consult with your Placement Director as to when a Dow Representative will visit your campus.

The Dow Chemical Company, Midland, Michigan

ENGINEERS and SCIENTISTS

when parallels

meet

...as in advancement opportunities at Sylvania

It remained for Nicholas Lobachevsky to solve a riddle that bothered mathematicians for the better part of twenty-two centuries.* He was able to construct a rational geometry by denying Euclid's fifth postulate — by maintaining that parallels *do* meet.

Here at Sylvania Electric we have a noneuclidean geometry of our own, in which parallels also meet. It's a geometry of professional development, though, and not just of points, lines, and planes.

THIS: At Sylvania a man advances by one of two parallel paths.

If his interests and talents lie in the areas of engineering and scientific specialization, he advances as a *specialist*.

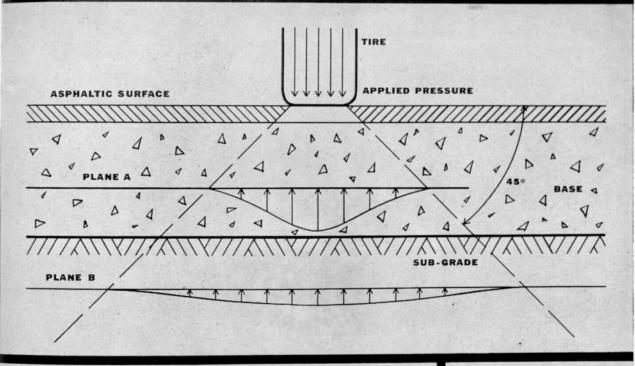
If his forte is in the areas of organization and administration, he advances through *management*.

These parallel paths meet in a common point: At Sylvania a man knows that he is given the fullest opportunity to develop and exercise his talents. He knows that a man goes as far and as fast as he is able in the path of his choice. Whether he chooses management or specialization, he finds *equal* rewards and compensation.

Graduates and men with advanced degrees in science and engineering will discover Research, Development, Manufacturing and Marketing careers at Sylvania—in specialization or management—in:

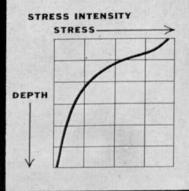
LIGHTING, RADIO, TV, HI-FI, ELECTRONICS, SEMICONDUCTORS, PHOTOGRAPHY, COMMUNICATIONS & NAVIGATION SYSTEMS, AIRBORNE DEFENSE, RADAR, ECM, MISSILES, COMPUTERS, CHEMICALS, PHOSPHORS, PLASTICS, METALS & WIRE.

Contact your college placement officer for an interview, or write us and ask for a copy of Today & Tomorrow with Sylvania".


WE MEAN NO DISCREDIT TO BOLYAI OR GAUSS. LOBACHEVSKY MUST TAKE CHRONOLOGICAL PRIORITY, HOWEVER.

DBA CHEVSKY

SYLVANIA ELECTRIC PRODUCTS INC. 1740 Broadway, New York 19, N. Y.


LIGHTING • TELEVISION-RADIO • ELECTRONICS • PHOTOGRAPHY • ATOMIC ENERGY • CHEMISTRY-METALLURGY

ASPHALT ENGINEERING BULLETIN # 4

Assume a loaded wheel on a typical Asphalt pavement consisting of Asphalt surface, base course and natural sub-grade. The entire load is transmitted to the pavement by the tire. The load, applied at the surface, is distributed downward and outward through the Asphalt pavement and base into the native soil or sub-grade. The load spreads out at an angle of approximately 45° in the manner indicated above.

Look at the curved line. It shows the approximate manner in which intensity of stresses in flexible type pavements decreases in depth. The total load affects the shape of the curve: the greater the unit load, the greater the stress at the given depth . . . except that it cannot exceed 100% of the contact pressure at the surface.

Design of flexible ASPHALT pavement

The flexibility of modern Asphalt Pavement is one of the great achievements of scientific roadbuilding.

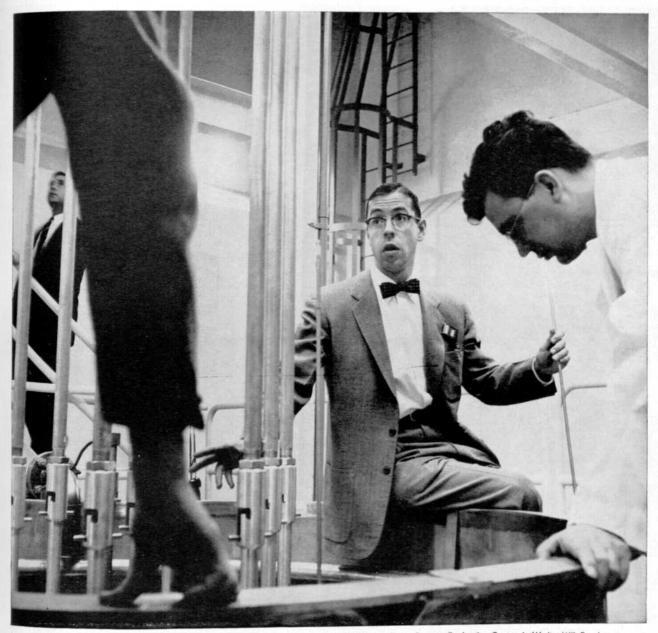
It is the planned result of layer-"Pon-layer construction that locks" surface to foundation to help spread the weight load, absorb shock and pounding without cracking.

Modern Asphalt paving is

designed to make maximum use of native soil and other native materials such as sand, stone, slag and gravel. This is one important reason for the economy of modern Asphalt roads. Study the diagrams on this page. They show how the load is distributed on modern Asphalt construction and how the maximum stress varies with depth of pavement.

Be sure to cut out and file this data theft and those previously inserted in this publication. Make them your professional reference material.

Ribbons of velvet smoothness . . . MODERN ASPHALT HIGHWAYS

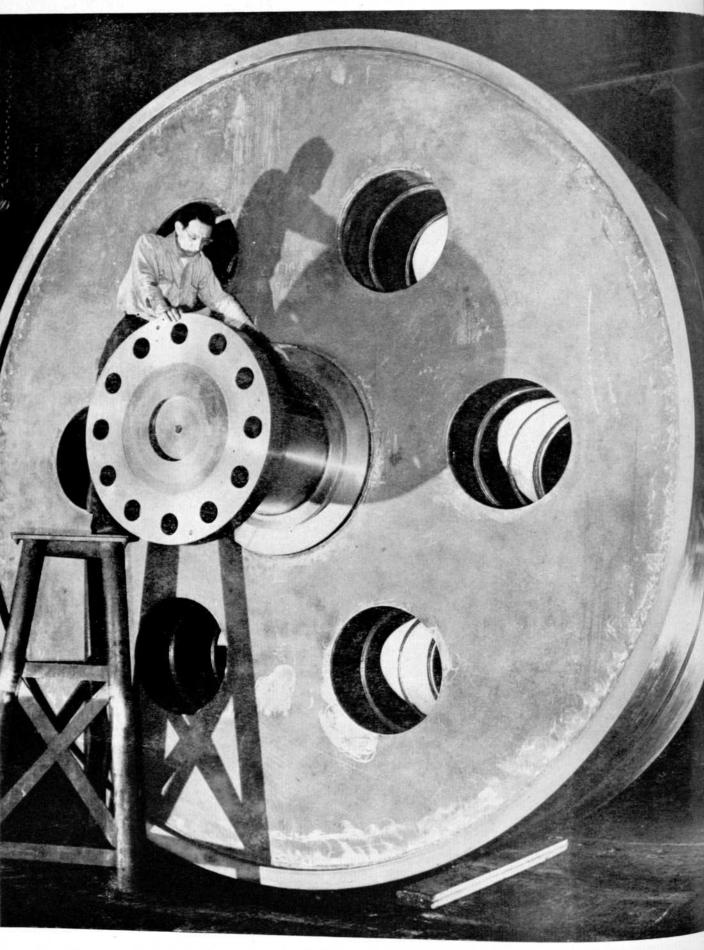

THE ASPHALT INSTITUTE, Asphalt Institute Building, College Park, Maryland

March, 1958

Go with us... and you'll <u>Grow</u> with us! CONVAIR FORT WORTH

CONVAIR IS & DIVISION OF GENERAL DYNAMICS CORPORATION

Harvey Graves (Dartmouth, BA '50, MSEE '51) discusses a reactor experiment at the Westinghouse Reactor Evaluation Center, in Waltz Mill, Pa. As manager of the Nuclear Design Section, Mr. Graves works with Dr. Wilfried Bergmann (Vienna, PhD '51), on right, and other young scientists who operate the facility.


At 30, Harvey Graves directs nuclear design of two major Westinghouse reactors

After completing the Westinghouse Student Training Course in 1951, Harvey Graves attended the Westinghouse Advanced Design Course* and was sent by Westinghouse to the Oak Ridge School of Reactor technology for one year. Back at Westinghouse again ^{In} 1953, Engineer Graves did advanced work on nuclear reactor development.

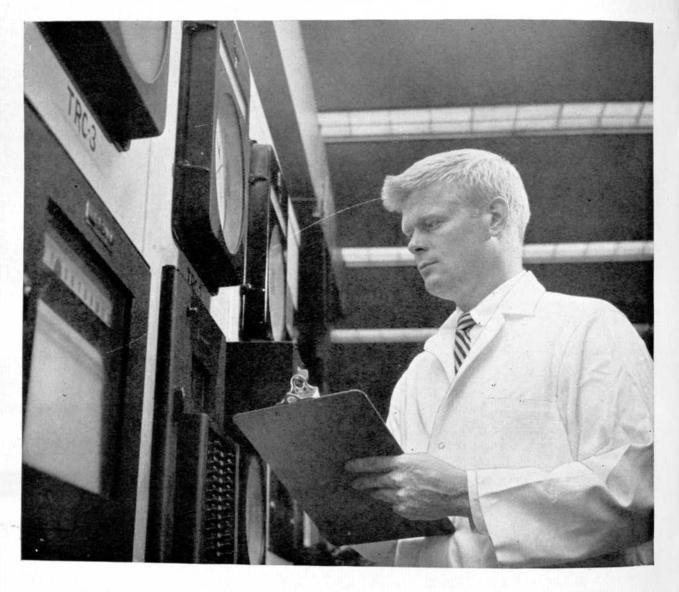
In 1955, he was promoted to supervisory engineer on the Belgian reactor project. In 1956, he was again Promoted to Manager, Westinghouse Nuclear Design Section. Today, Mr. Graves' 24-man section is developing and designing the nuclear portion of commercial factors for the Yankee Atomic Electric Company and the Center d'Etude de l'Energie Nucleaire in Belgium. Progress? Certainly. And if you have ability and ambition, you'll find Westinghouse offers equal engineering opportunities in automation, jet age metals, radar, semiconductors, electronics, large power equipment, guided missile controls and dozens of other fascinating fields.

For more information on professional opportunities at Westinghouse, write to Mr. J. H. Savage, Westinghouse Electric Corporation, 3 Gateway Center Pittsburgh 30, Pa.

Spartan Engineer

of michigan stat	e university VOLUME 11 NO. 3 MARCH, 1958
FRANK W. Brutt	16 ^{OPerQtion} Purity ^K *TM* A
ASSOCIATE EDITOR	18 Boxes, Boxes, Boxes
LARRY PAULET	20 The Mighty Midgets
	Reprinted from Skyline, North American
ASSISTANT EDITOR CHARLES PUMA	Aviation co*
	22 Trade in Your "Black and White" Jack Colegrove
MANAGING EDITOR WARD FREDERICKS	28 Gubs & Societjes
NEWS EDITOR	31 Fudge Factors
NORM DILL	39 Today's Most mportant New Prime Mover
	Edited by Norm Dill
BUSINESS MANAGER FRAN WEIHL	42 New Developments Edited by Norm Dill
PROMOTION MANAGER ELLYN HARDS	66 Index To Advertisers
	68 Sidetracked
ADVERTISING MANAGER RODGER FAUL	FRONTISPIECE: Gear for Bunyan's watch?
	This 27 ton 12' diameter gear is actually a gear wheel which will be used in each of 2 reduction sets aboard
CIRCULATION MANAGER	the SS Brazil A*
KATHY DAVENPORT	Courtesy of General EleCtn£
CLUBS & SOCIETIES	Cover: by Elaine Lepel
JOHN TALBOT	MEMBER ENGINEERING COLLEGE MAGAZINES ASSOCIATED
STAFF BURT MOORE MAGGIE McNAMARA	Published four times yearly by the students of the COLLEGE OF ENGINEER- ING, MICHIGAN STATE UNIVERSITY, East Lansing, Michigan. The office is on the third floor of the Student Services Building, Phone ED 2-1511, Ex- tension 2614. Entered as second class matter at the Post Office in East Lansing, Michigan, under the act of March 3, 1879. Address Mail to: P. O. Box 468, East Lansing, Michigan.
ADVISORS	

Publishers representative


Littell-Murray-Barnhill, Inc. 369 Lexingfon Avenu6/ New York 605 W. Michigan Avenue, Chicago

Subscription rate by mail \$1.00 per year. Single copies 25 cents.

March, 1958

PAUL G. GRAY

D. D. McGRADY

Pushing back the frontiers...in chemistry

Exploring new frontiers is still a pretty exciting business, especially in the great scientific and research centers like the Whiting Laboratories of Standard Oil Company. Here men like Dr. Omar Juveland are engaged in important exploratory work such as the search for new and improved catalysts for use in high polymer chemistry. In the photograph, Dr. Juveland is recording data on a polymerization process taking place in this research area.

Dr. Juveland is one of the group of young scientists in Standard's Hydrocarbon and Chemicals Research Division. Born in Lake Mills, Iowa, he did his graduate work in organic chemistry at the University of Chicago. He received his BS in chemistry from St. Olaf College, Northfield, Minnesota, in 1950. He is a member of Phi Beta Kappa, Sigma Xi, and the American Chemical Society.

Busy young men like Dr. Juveland have found opportunity and work to their liking in the Standard Oil Laboratories at Whiting, Indiana. They share in the progress and accomplishment which contribute so much to the technical advancement and improvement required by America's expanding economy.

Spartan Engineer

REPORT FROM RYAN

Ryan's Diversification Creates Wide Opportunity for Engineers

X-13 Vertijet Adds New Punch to Airpower

Washington — Unveiled in an unprecedented flight at the Pentagon, the Ryn X-13 Vertijet gave military officials a glimpse of the future of air-P°wer. Like a huge bat, the Vertijet unhooked itself from its nose cable. hovered vertically, then whipped over into horizontal flight and roared out of sight.

World's first jet VTOL aircraft, the ^vertijet combines the flashing performance of jet power with the mobility of ^{mi}ssile launching. It frees supersonic airrpowerfrom runways and airports. without landing gear, flaps, actuators, the X-13 concept means less weight— ^{mo}re performance in speed and climb.

In the words of a top Air Force general, "The Vertijet has provided milltary planners with a new capability for ^{rmannedair} craft of the future."

Achieved in close cooperation with the Air Force and Navy, the Vertijet is based upon Ryan's unsurpassed 21/4 million manhours of research, development, and test in VTOL aircraft.

Navy, Army to Use New Ryan Navigator

San Diego—Navy aircraft—piston engine, jets and helicopters will soon be equipped with Ryan lightweight automatic navigators and ground velocity indicators. Lightest, simplest, most reliable, most compact of their type, these systems are self-contained and based on continuous-wave radar.

The navigators provide pilots with required data such as latitude, longitude, ground speed and track, drift angle, wind speed and direction, ground miles covered and course and distance to destination. Ryan is also developing guidance systems for supersonic missiles.

More Orders for Ryan Firebees

San Diego-Nearly \$20 million worth of Ryan Firebee jet drone missiles have been ordered by the Air Force and Navy in 1957. In operational use, the Firebee is the nation's most realistic "enemy" target for evaluating the performance of air-to-air and ground-to-air missiles. It possesses the high speed, altitude, maneuverability and extended duration needed to simulate "enemy" intercept problems.

America's number-one jet drone, the Firebee is another example of Ryan's skill in blending aerodynamic, jet propulsion and electronics knowledge to meet a challenging problem... answer a vital military need.

Ryan has immediate career openings for engineers

Look to the future. Look to Ryan . . . where you can grow with an aggressive, forward-looking company. You'll find a variety of stimulating projects. Ryan engages in all three elements of modern flight airframes, engines and electronic systems.

	SEND FOR RYAN'S BROCHURE, "ENGINEERIN
	OPPORTUNITIES." MAIL THIS COUPON TO:
Rya	James Kerns, Engineering Personnel n Aeronautical Company Ibergh Field, 2736 Harbor Drive Diego 12, California

NAME		
ADDRESS		
PHONE NO.		
DEGREE	SCHOOL	

FIELD OF EXPERIENCE OR PREFERENCE

CAN YOU FIGURE IT OUT?

LAND

223 years ago, the good townspeaple of Koenigsberg amused themselves with this puzzle: How to cross all of their town's seven bridges in one trip without recrossing any of them? Can you figure it out?

Robert G. Hildenbrandt tells what it's like to be . . . and why he likes being . . . an Electronic Circuit Designer with IBM.

*"SOLUTION"

This is one of the celebrated problems of mathematics, dating from the 18th century. That it CAN'T be done was proved by the great mathematician Euler in 1735. Euler's "solution" founded the science of topology, important today in electronic circuit design.

RIVER LAND *"Solution" at bottom of page

RIVER

FIGURING OUT A CAREER?

Selecting a career can be puzzling, too. Sometimes, as with the seven bridges, the answers aren't always available. In engineering and research, it's just as important to discover that no solution may be possible as to find the solution. It is equally true in career selection that some companies can provide solutions . . . opportunities for growth . . . not always available in all companies. Here's how Bob Hildenbrandt found the solution to his career problem - at IBM: bince joining IBM," Bob says, "I've seen some amazing developments in advanced circuitry. In my opinion, transistorized digital airborne computers represent one of the most progressive assignments in electronics today As we enter the missile age, the technology of packaging and miniaturization will take on increasing importance. Transistorized computers offer an excellent chance for development work in computer circuits . . . high-frequency power supplies . . . magnetic amplifiers, regulators, storage devices. Challenge? It's tremendous - for we're working not only on present systems, but those of the future!"

RIVER

ISLAND

There are many excellent opportunities for well-qualified'engineers, physicists and mathematicians in IBM Research, Develop-men and Manufacturing Engineering. Why not ask your College Placement Director when IBM will next interview on your campus? Or, for information about how your degree will fit you for an IBM career,

JUST WRITE TO:

Mr. R. A. Whitehorne IBM Corp., Dept. 852 590 Madison Avenue New York 22, N. Y.

INTERNATIONAL BUSINESS MACHINES CORPORATION DATA PROCESSING ELECTRIC TYPEWRITERS MILITARY PRODUCTS SPECIAL ENGINEERING PRODUCTS SUPPLIES TIME EQUIPMENT Spartan Engineer

JOB FACTS FROM DUPONT

LIBERAL EMPLOYEE BENEFIT PROGRAM AT DU PONT INCLUDES INSURANCE, SAVINGS AND STOCK PLANS

WHAT'S <u>Your</u> Line? Du pont needs all Kinds of Engineers

DuPont has always needed chemists and chemical engineers, and still does. But today, there's critical need for engineers in almost every other field—civil, mechanical, electrical, instrumental and industrial engineering, to name a few.

Expansion is the major reason. In 1957, for example, sales at DuPont were nearly two billion dollars. Four new plants were being built. New research programs were being launched, New products were moving into the production and marketing stages. Engineers and scientists of all kinds work in 75 Du Pont plants and 98 laboratories in 26 states All of this tends to broaden opportunities for the young scientist and engineer at DuPont.

If you're interested in finding full scope for your ability, and this includes a great many special fields, Du Pont offers you plenty of opportunity to move ahead.

SEND FOR INFORMATION BOOKLET ON JOB OPPORTUNITIES AT DU PONT

Booklets on jobs at Du Pont are yours ^{10 r} the asking. Subjects covered ineludle: mechanical, civil, metallurgical, chemical, electrical, instrumentation and industrial engineers; atomic en-^{ergy} technical sales, business administration, research and development. ^{Name} the subject that interests you in a letter to Du Pont, 2494-F Nemours """fling, Wilmington 98, Del.

PERSONALIZED TRAINING

by F. L. Johns Du Pont Representative

When you join Du Pont as a scientist or engineer, you're given an actual project assignment almost at once and begin to learn your job by doing it. That's the essence of our training philosophy at Du Pont.

Our objective is to give you responsibility at the outset and qualify you quickly for more, because the more ice grow, the more tie need trained leaders.

Although there is no one training program at Du Pont (each of our many departments runs its own), all have several basic features in common. All are personalized tailored to the new man's background and interests. All involve close supervision on an informal, day-to-day basis. And all permit periodic evaluation of the new man.

This flexible system helps the new man to move ahead according to his abilities. He gets to know Du Pont and his job quickly. He gets a headstart on future responsibility.

You probably have questions about this program and how you'd fit into it. I'll be glad to try to answer them when I visit your campus. Why not sign up for a Du Pont interview at your placement office now?

Means More Security, Greater Real Income To Young Graduates

BETTER THINGS FOR BETTER LIVING

.... THROUGH CHEMISTRY

Du Pont believes that the employee builds his own job security by the way he does his work, by his contributions to the progress of the Company and by his readiness to accept responsibility.

But Du Pont meets the employee more than halfway with a program of benefits designed to help him as he advances.

Your employee benefits go to work the day you join the Company. They grow and build equity for you as the years go by. Vacations, life insurance, group hospital and surgical **coverage**, accident and health insurance, pension and bonus plans are all part of the program.

Let's look at a special example, the Thrift Plan. You become eligible for it after one year with the Company. For each dollar you invest in U. S. Savings Bonds, the Company contributes twenty-five cents toward the purchase of Du Pont common stock in your name. Roughly 65 per cent of the Company's 90,000 employees arc now participating in the plan.

When you're deciding on a career, security is only one consideration. But it's an important one to you and your family. At Du Pont, security is a bright part of the future **awaiting** the college graduate.

More than 700 of the some 1100 degree-granting colleges and universities in the U. S. are represented at Du Pont. Of these 700, more than half are the smaller liberal arts colleges.

Look around you

and

makes big things happen in exciting products

0

0

0

C

0

0

0

Paints, chemicals, glass, plastics, fiber glass ... all these products have exciting family trees. And at Pittsburgh Plate Glass Company, tomorrow's offspring promise to be even more intriguing.

Look around you ... at paint, for example. It's much more than mere color. Paint protects. It must be thoroughly researched, and carefully compounded to withstand infinite variations oi atmosphere, heat, stress and other conditions. Or look at chemicals . . . their roles in the creation and **development** of textiles, metals, paper, agriculture, missiles, medicine. You name it, chemicals are there, making important contributions. Glass. These days, it can be made to remain rigid at blast furnace temperatures, withstand supersonic speeds, have the tensile strength of bronze. And it's much the same story for plastics and fiber glass. Everywhere you look - in architecture, industry, the home, everywhere' PPG products find new, exciting applications with fascinating and challenging potentialities.

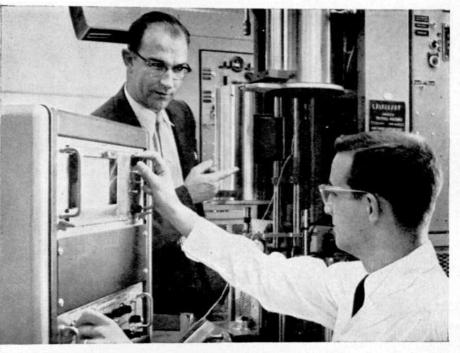
Are you seeking a career that requires creative thinking, utilizes all your skills and know-how, offers a chance to learn the latest techniques? Then look into your enticing career possibilities with the Pittsburgh Plate Glass Company. Contact your Placement Officer now, or write to the Manager of College Relations, Pittsburgh Plate Glass Company, One Gateway Center, Pittsburgh 22, Pennsylvania.

AS

COMPANY

GLASS . CHEMICALS . BRUSHES . PLASTICS . FIBER GLASS

G



PAINTS

G н PI

Δ т

E 345 PI S, MERCHANDISING BRANCHES, AND SALES OFFICES LOCATED IN 250 CITIES

WORKING WITH A MASTER-Young Metallurgical Engineer James Hornaday, Jr.-B.S. '54, M.S. '56-develops new high-temperature coatings under guidance of Dr. Robert E. Thomson. Head of Metallurgical Engineering Department of GM's Research Staff, Dr. Thomson is recognized as one of the nation's leading metallurgists-has pioneered many advancements in his field.

Because *engineering is a profession* at GMyour professional stature grows year by year

HERE's something of serious importance to you as a young graduate engineer:

Are you taking just a job—or are you going out to really *practice* the respected profession for which you have been so fully trained?

Here at General Motors we long ago recognized that engineering is a profession-and began treating our engineers who work on our hundreds of products as professional men.

For example our engineers are used on assignments that give them an opportunity to use their training and education as they were meant to be used. To let them practice engineering.

^or take the fact that GM encourages its engineers to gain professional recognition by presenting technical papers to ⁱⁿgineering societies.

Take. too, the encouragement our engineers receive in Working for advanced degrees, in doing original research. The fact that over 179 of our engineers and scientists received over 164 patents for such work in a recent fourmonth period is one indication of the opportunity for creative work here at GM.

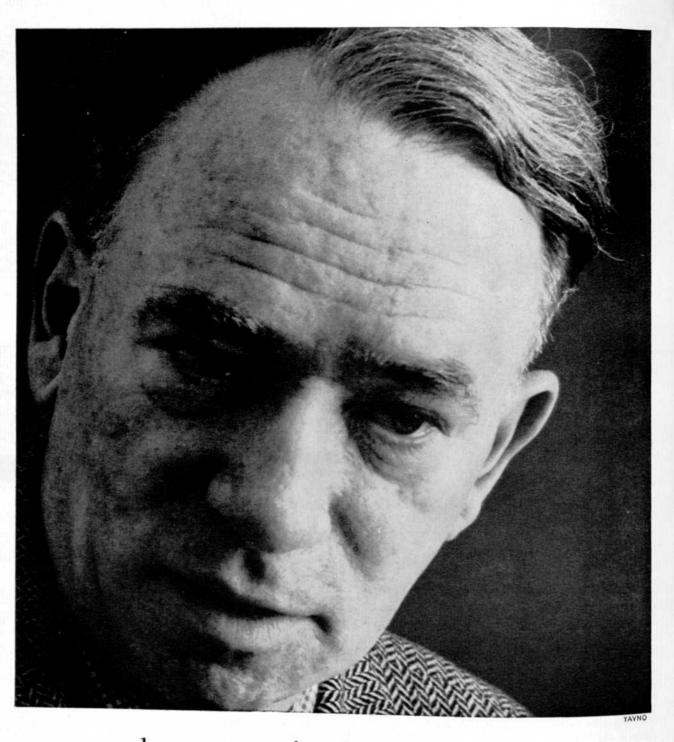
An these are but a few examples of the fact that engineering is a profession at General Motors.

Why do we place engineering in this special category?

Because we know that from the work of our engineers at our 35 divisions and 126 plants in 71 cities and 19 states and at our huge Technical Center near Detroit—will com<; the products that will keep General Motors on its progressive path.

Naturally, you get more than professional recognition. Your salary reflects your ability and progress.

And, of course, there is opportunity without limit. For 14 of the 33 GM Vice-Presidents are engineers, as are 23 of the 42 Division General Managers.


Today we are looking for young men who may fill tomorrow's GM executive positions. Should you wish to join us and practice your profession as you build your career, let us hear from you. It could be the most important letter of your life.

GM positions now available in these fields:

MECHANICAL ENGINEERING • ELECTRICAL ENGINEERING INDUSTRIAL ENGINEERING • METALLURGICAL ENGINEERING AERONAUTICAL ENGINEERING • CERAMIC ENGINEERING MATHEMATICS • INDUSTRIAL DESIGN PHYSICS • CHEMISTRY

GENERAL MOTORS CORPORATION

Personnel Staff, Detroit 2, Michigan

... on the prevention of total war

"Modern civilization is now faced with a task of fatal urgency. Unless man can find ways of limiting war. modern civilization itself may perish. The difficulties of limiting warfare today contrast with the capacity of major powers to wage total war with ever fewer restrictions and ever fewer survivors. Today, it is no longer a common belief in the dignity and destiny of man, but

only prudence and fear, that can prevent total war. And yet. in the light of reason, the efforts to avert total war hold more promise of success than the hope for freedom from all war. It still is easier, as it has always been, for man to restrict war than to establish peace on earth."

- H. Speier, Head of the Social Science Dii'is'⁰"

THE RAND CORPORATION. SANTA MONICA, CALIFORNIA A nonprofit organization engaged in research on problems related to national security and the public interest

INDIANAPOLIS IND : (Special) Lockheed Aircraft Corporation and the Allison Division of General Motors Corporation have teamed up to produce a commercial Passenger transport that promises to revolutionize air transportation on the medium-and-short-range flights. Cruising at more than $400-m_Ph$ the Allison Prop-jet Lockheed Electra will bring jet-age speed and comfort to passengers and set new standards of operating economy for air lines of the world.

Teamwork within Allison, just like the Lockheed-Allison team, is **highly prized** ^by newly graduated engineers. If you would like to know more about the All¹son team, write Personnel Department, College Relations, Allison Division of General Motors Corporation, Indianapolis, Indiana.

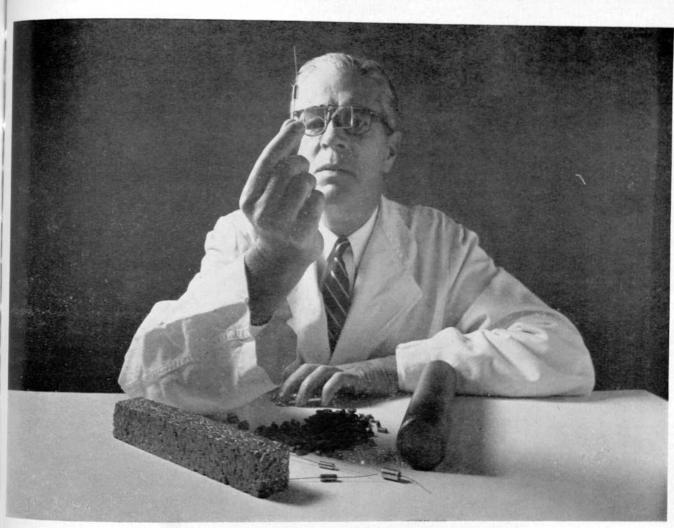
ⁱ 5

Operation Purity

by Richard Geeck

Pure metals, a highly desirable attainment, is the object of numerous companies and research laboratories. The author points out the activity of industry in its endeavor to achieve the theoretical 100% purity.

EVER since man has stumbled on nuggets of copper and gold in the bed of some ancient stream, he has been dealing with metals in various degrees of impurity. Even today, commerically pure metals contain a small amount of impurities. So-called pure gold is about 0.4 percent copper and other impurities. It was not until recently that science and industry have begun to approach truly pure metals. Pure metals in this case being whittled down to less than one part impurity in 1(X) million. Since man's history can be written in terms of metals, this is the beginning of a new metallurgical age.


The great difficulty to begin with was that all metals are found to react with other elements of the earth's crust to a great extent. For centuries men struggled with crucibles and fire, trying to separate some of the more easily separated metals from their ores. The long Bronze Age gradually gave way to the Iron Age. After this came the industrial revolution, as iron was rapidly refined on a large scale to steel. Then the steel was found to have a large range of properties when alloyed with other metals. As time went on, more and more difficult metals began to be separated from their ores, such as aluminum and magnesium.

Beyond these older metals, however, is a range of highly reactive metals, such as titanium, zirconium and hafnium, which are not only very difficult to separate from their ores, but are very difficult to keep in this state. When an attempt is made to melt them, they combine very readily with the oxygen and nitrogen of the air and with the container in many cases. When these metals react in this manner they form brittle, spongy masses with no resemblance to metals 16 at all. In fact, until the last decade they were only theoretical metals. All metals to a greater or lesser degree react in the same way, which explains why, under the traditional smelting and refining processes, none has yet been secured in an absolutely pure state.

Until a metal is isolated in such purity, its properties can not be known to the fullest extent. This is one aspect in science in which part of the phenomenon is a mystery. Alloying, i.e., proceeds by laws not fully understood.

The first real desire to obtain a pure metal came from the scientfic passion for measurement. The atomic weight of silver had to be settled as accurately as possible to provide a key reference in the table of elements. It was Theodore W. Richards of Harvard University who finally succeeded in preparing a tiny amount of very pure silver and establishing its weight as the international standard. Later, with the developments of metallurgical microscopy, the electron microscope and X-ray diffraction, it was found that a pure metal typically has a tight, crystalline structure in which atoms are arranged in regular, perfectly spaced polyhedral forms, called a crystal lattice. When a metal is mixed with another to form an alloy it is found that this second metal distorts the lattice in a regular way, generally adding strength, hardness, or other properties to the alloy; impurities such as gases, slags, or other minerals cause haphazard breaks or discontinuities in the lattice, generally weakening the material.

The New Jersey Zinc Company was one of the first companies to make advances towards purer metals in the late 1920's. They purified zinc by fractional distillation and obtained a degree of purity with less

The basic steps in tantalum production are shown in this photo. In front of the scientist are roundels of highpurity tantalum made by Electro Metallurgical Company. These small, cylindrical shapes are pressed into electrodes similar to the one at left, and arc-melted under vacuum. On the right is an ingot produced by this method. Tantalum is used in high-efficiency capacitors, such as those being examined, vacuum tubes, and for chemical processing equipment.

than 0.005 percent impurity. This zinc was used in the big automobile die-casting market, because the pure zinc, unlike ordinary zinc, was corrosion-resistant and made strong, cheap alloys for precision casting.

There was really no great push for pure metals until the second World War. It was at that time that accumulated knowledge and curiosity regarding met-^{als} **became** linked to the driving demands of three advancing technologies. Atomic energy, for example, Squired a purity in metals extending from its base ^{me}tal, uranium, right up to the reactor itself. Supersonic aircraft required metals able to withstand tre-^{me}ndous heats, this seemingly being a quality of pur-^{It}y led to the development of pure titanium. Finally, new electronic devices required ultra-pure metals ^both new and old in order to function at all.

The first result was **the** discovery in metals of many ^{re}markable new properties which were not known until these metals **were prepared** in the pure form. This was not entirely unexpected by scientists. For ^{ex} ample, the reduction of carbon in iron from 4 to 1 Percent makes all **the** difference between brittle cast

iron to tough steel. Alloys get their wide ranges from small amounts of other metals which are added to give the alloy different properties. The present drive for purity leaves hardly a new or old metal untouched, and the sheer range of new properties is completely different.

Chromium is another metal which shows remarkably different properties when in the pure state.

Chromium as we know it is a hard, brittle metal used almost exclusively in plating and in such alloys as stainless steel. But, chromium when purified is soft at room temperature as compared with the impure chromium. It is almost as ductile at room temperature as soft wire. Vanadium is another metal like chromium which is very brittle in its common form. In fact, vanadium is used as a toughening agent in tool and spring steels. Like chromium, vanadium becomes quite ductile when pure at room temperature.

More remakable properties have shown up in the laboratory. The General Electric Research Laboratory-has had a big hand in metal purification since the

(Continued on Yagc 56)

Boxes,

Boxes,

Boxes . . .

by Larry Paulet GCA '59

Tensile strength tester is used in several packaging applications.

Student operates a metal-stitching machine.

The packaging industry, a 15 billion dollar business, is demanding collegetrained personnel for design and

development

PACKAGING, a relatively new field, is providing challenging opportunities to college-trained personnel in a 15 billion dollar industry.

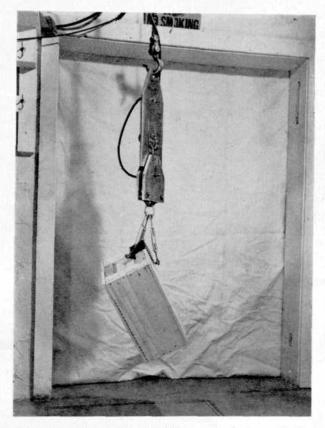
Only five years ago, after repeated requests from the packaging industry, Michigan State University established a curriculum in packaging. Today. with 144 undergraduate and 9 graduate students enrolled, the School of Packaging is progressing rapidly, ana is providing the packaging industry with personnel capable of originality and responsibility.

After World War II, it became evident that poor packaging had resulted in waste amounting to mulions of dollars. Consequently, a need arose for p^{er} , sonnel trained in materials, statistics, operations, and management.

The program **at** M.S.U. was inspired by John Ladd of the General Box Company. After a thorough investigation, Dr. A. J. Panshin, Head, Department of Forest Products, paved the way for approval of the first curriculum in packaging ever offered by any university.

At the present time, there are eight specific packaging courses in the curriculum, and many other allied subjects are offered to give the student a wide range of course study in business, mathematics, chemistry, physics, and engineering. Also, a student may take up to 36 credits in electives such as marketing, purchasing methods, production control, food preservation, and management.

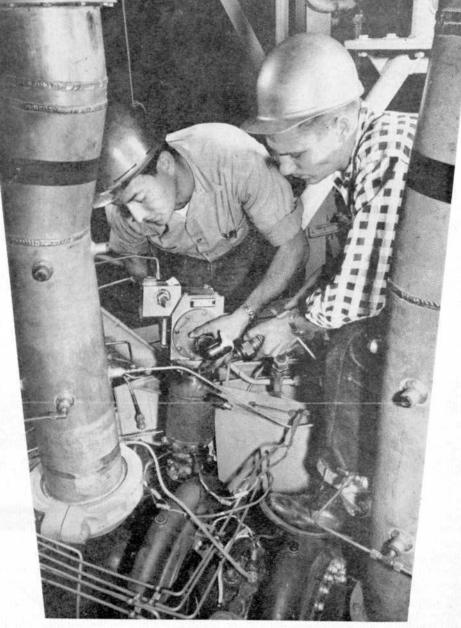
This flexibility in the curriculum offers the student an opportunity to take courses that will help him in his particular interest, whether it be technical sales, product development, or package designing and testing.


The curriculum is periodically revised to keep abreast with progress and meet the demands of the industry. An Industry Advisory Committee, a permanent **body** representing venders and users of packaging materials, as well as consultants and editors in the field, meet every year on the M.S.U. campus to offer suggestions, review courses, and bring the curriculum **up** to date. As a result, a graduate is recognized when he enters the business, and there is no apprenticeship needed or required to familiarize him with recent developments.

After his second or third year, each packaging student must acquire 12 weeks of practical experience within the **industry**. Only after this close association with the industry, can a student realize and appreciate the challenging problems that he will be confronted with atter graduation.

Packaging design is both an economic and engineering problem. The container must withstand all abuses in transportation and storage, yet it must be within a reasonable cost to the consumer. There have been cases where the package was worth more than the product enclosed. Also, if the volume of a package can be reduced only one or two cubic inches Per cubic toot, the cost ot storage area and transportation can be reauced appreciably.

There is a great **demand for college-trained personnel** in this field who are ambitious, and desire to tackle these **problems.** The **pay** is on a par with **the engineering profession**, and there are many more Positions available than there are **qualified people to** fill them.


The packaging **industry** is **only** in a stage of infancy, and the potentialities have hardly been scratched. In the future, however, with men of vision and ability in its ranks, the **industry** is anticipating better and cheaper packaging for all industrial and commerical consumers.

TOP—The box under durability analysis is ready for testing.

BOTTOM-After repeated cycles, the box has parted and the load is exposed.

A rocket engine gas generator and turbopump, hidden in a maze of instrumentation, propellant tubing and bracing, perform amazing feats of engineering. Mechanics are installing a blade valve for turbine pump testing.

The Mighty Midgets

SMALL PUMPS AND GENERATORS PUT MUSCLES IN ROCKETDYNE'S POWERFUL MISSILE ENGINES

Reprinted from Skyline, North American Aviation Co.

BY NOW THE "UNSUNG HERO" theme has become an old wheeze in success stories. Star quarterbacks don't win football games; it's the "forgotten" men on the line. Business tycoons would be back pushing a broom if it weren't for the hundreds of "little people" who backed them in their rise to success.

Rocket engines, the newest successes in the **power** package field, must go right along with this tradition of modesty. The roaring, flame-spitting thrust chamber of a rocket engine owes much of its glory to two comparatively pint-sized units without which the rocket couldn't hunch itself off the launching pad.

The gas generator and the turbopumps are the mighty midgets of rocket engines. While the attention of the world is centered on the ATLAS, THOR, JUPITER, NAVAHO, and REDSTONE missiles, and the thundering Rocketdyne engines that power them, **these** two stalwarts remain hidden in a maze of propellant tubing and engine bracing, ready at the opening of a valve to perform amazing feats.

The turbopump must be capable of gulping down an amount of propellant equal to the contents of a railroad tank car in less than two minutes. The gas generator, to turn the pump at its incredible speeds, must develop power equal to that generated by the motors of six modern automobiles. At the same time, the two components must be extremely light weight to meet one of the **primary** requirements for use in a rocket engine.

Little Pump Has a Big Job

The bulk of the flame and the fury of a rocket engine firing takes place within the thrust chamberthe spot which, like the football quarterback, gets the major share of credit for all the "ground" gained. But that flame and fury could not exist unless there was a turbopump, operating like a buzz saw, sucking the propellants out of the tanks and hurling them at tremendous flow rates and exceedingly high pressures into the thrust chamber. When you consider the tremendous effort being expended to lift a hasketball-sized satellite into an earth orbit for the Project VANGUARD, you can understand why the turbopump must be extremely light. There is no telling where, in this world or out of it, a turbo-Pump may be carried in the flight of a missile. A pound saved is a wonderful achievement.

Revolutions-per-minute is not a true indication of the efficiency of a turbopump, but it is an indication of the busy life led by the pump. A speed of 10,000 revolutions per minute is commonplace in the Rocketdyne turbopumps. Speeds of 22,500 rpm **are** not unknown, and the **engineers** are striving for 30,000.

Testing of the turbopumps is accomplished at Components Test Laboratory in Rocketdyne's Pro**pulsion** Laboratory. CTL's two highly utilitarian **buildings** are dedicated to one aim-guaranteeing the reliability of components before they are sent up to join the engines on the big stands. They are blunt. squared-off buildings, surmounted by tanks and chopped up with test pits. The laboratory is equipped to probe into any **Component** and accept it or reject it with all the finality of a surgeon peering into a chest cavity.

At CTL are two **massive** generator units dial formerly were in Southern **California's Pacific Elec**trie streetcar sub-stations at **Pomona** and Etiwanda. The power from these two generators is used to feed three electric motors from a U. S. **Navy** submarine that less than ten years ago was **prowling** the Pacific Ocean. The submarine motors are linked to speed increasers that provide the **necessary** revolutions to turn the pumps at the desired test speed. For most of the tests, soft water is used as a fluid because the chemicals present in San Fernando Valley water are enough to upset the delicate calculations involved in calibrating a high-speed pump.

In other pump tests, liquid oxygen and rocket engine fuels are used as fluids to **duplicate** the actual conditions within the rocket engine where **highly** explosive mixtures of propellants ram through the turbopump only a seal's space away from each other. The engineers must restrain the liquid oxygen on one side of the turbopump from any unfriendly mixture with rocket engine fuel, four hundred degrees higher, on the other side.

Pumps Turn at Sonic Speeds

During a test the pumps whine in sonic and ultrasonic modes, and the speed increaser causes the thick concrete flooring to quiver. On signal, thenis an abrupt cutoff. Within seventeen seconds a pump spinning at 22,500 rpm is brought to a complete halt.

Remember that at Components Test Laboratory it is necessary to utilize two massive streetcar substation generators and **three** huge motors to turn over a pump at desired test **speed**. What takes the place of this bulky set-up when the turbopump is placed within the rocket engine?

The answer is a gas generator, a unit that may be likened to an ostrich egg nestled within a miniature pot bellied stove. A gas generator is a device which produces a usable gas by means of chemical decomposition, recombination or combustion. It's an extremely small component that could be tucked into the drawer of an engineer's desk-with room for a lunch bucket left over. Yet it develops as much as 1800 horsepower.

When the gas generator is in operation, fed by the same propellants that ignite in the big thrust chamber, there is an extended, controlled explosion creating a rush of gas. The gas causes the blades of the turbopump to whirl; the pumps suck the propellants from the missile tanks, hurl them through the injector into the thrust chamber-and the missile is on the way.

Because the by-products of a gas generator firing are inflammable gases, at the Test Laboratory ten-

(Continued on Page 58)

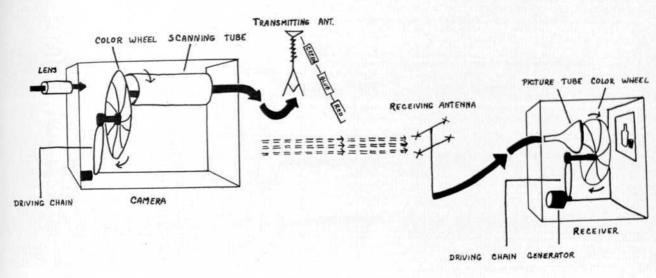
A new development in color picture-tube engineering may make a \$300 receiver possible

by Jack Colegrove, '57

GODFREY was seated in a big over-A.RTHUR stuffed chair sipping a cup of tea as he introduced Faye Emerson to the first commercial color-television audience in history. The time was July, 1951; the place-a large CBS-TV studio on 63rd street in New York City; and the audience consisted of those fortunate enough to possess one of the two hundred color sets in existance, or who had made their own adapter. The hour-long variety show had many other CBS-TV personalities as well, including Ed Sullivan, Garry Moore and Sam Levenson who in their turn performed for the limited, but appreciative audience. Miss Emerson's red gown had a tendency to fade to a greenish tint on occasion, and Godfrey's ears glowed a dull shade of red but these and other slight imperfections were deemed inconsequential in light of the magnificence of color reception. A new milestone had been reached in a progressive entertainment medium. Yet, as we shall see subsequently, tint TV was to become the center of much criticism and public controversey.

Had CBS's mechanical color television transmission system progressed to a point whereby TV viewers would accept it? Would these same viewers invest upwards of \$1000 in a receiver that could be used only four or five hours per week for the present?

These and many other questions were yet to be answered. Let us go back and trace those steps which led to this initial broadcast and subsequent TV-color programming.


Early in 1947 the Columbia Broadcasting System demonstrated in a closed showing its new "Field Sequential" color transmission system to members of the Federal Communications Commission, the press, 22 and the TV industry in a concerted **effort** to **have** their system licensed as the first color broadcasting service. Rival Radio Corporation of America (RCA) objected that an approval of CBS's mechanical system would be unfair to U. S. televiewers in that it could not be received on present black and white sets. Furthermore, they insisted that the resulting quality was poor, and had little chance for improvement. They asked the FCC to rule against CBS, with the promise that they would have a far superior electronic system perfected within four to five years that could be received on present black and white sets.

After some deliberation, the FCC, in March of 1947, announced that color television was not at present perfected to the point where it could be licensed commercially. It was to be a few years more before the U. S. was to enjoy tint-TV.

Television as an entertainment medium was heginning to capture the public's fancy and those most concerned with its availability—viewers, advertisers and broadcasters-began clamoring for television m color. It is interesting to note that of these three, only the broadcasters (and only **a** minority of them) continued to support color-TV once it had been initiated, but more of this later.

Three and **a** half years later, CBS-TV once **again** petitioned the FCC **to** grant them **a** license to trans, mit in color with their improved "Field Sequential system. In an effort to thwart CBS's move **to** #>>> control in color-casting, RCA demonstrated its T> chroic Mirror" transmission **method.**

RCA's system had as **its** basis three "**dichroic** mirrors" which were able to direct the three priman

CBS-TV "Field-Sequential" System. Reprinted from "LIFE," February 27, 1950, Page 66.

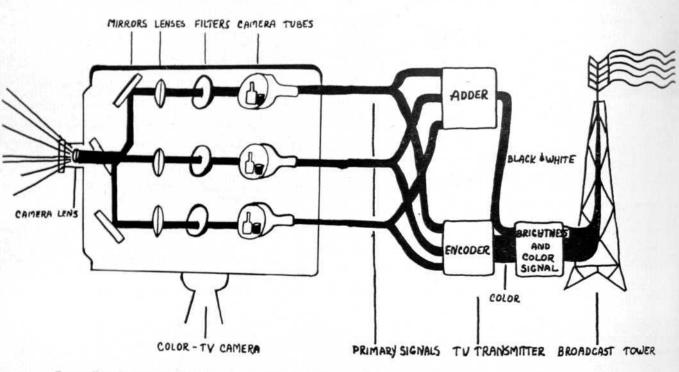
colors, red, green and blue, in two different directions by transmitted light. Reportedly, RCA's electronic method would transmit more distinct images and present a truer representation of color diversity than CBS's mechanical system.

However, the FCC ruled that CBS's improved system was superior to that of the RCA method and, in view of the improvements evident in CBS's entry, the commission granted a license to the Columbia Broadcasting System in November, 1950, which allowed the network to telecast programs in color.

The CBS system of transmitting color images employed a three-color revolving wheel which rotated behind the lens of the camera. The disc was composed of three color filters which separated the incoming image into its three primary colors. The red segment of the wheel filtered the image so as to permit only the red portion to pass through. In like manner the other two filters permitted the entrance of only the blue and the green portions, all in succession. These three color signals were then converted into electrical impulses and transmitted.

In the home the receiver intercepted the signal and by means of a synchronized color-wheel the signal was once again separated into its three constitutent primary colors. The green image is formed as the green segment of the wheel passes over the face of the tube and in exact manner the red and blue images are formed.

When CBS got the green light to commence color-casting, they purchased the "Air King' television receiver manufacturing company for the express purpose of producing adapters for monochrome receivers then in use. This move was necessitated by the refusal on the part of set manufacturers to supply the public with the necessary attachments. It seems that the executives at CBS were the only men in the industry who felt that their system of color transmission had a future. Set manufacturers were not willing, naturally, to invest huge sums of money in a project they thought to be only temporary.


During the early months following the color program featuring top network personalities, CBS-TV did only limited color-casting on five eastern affiliates. These were mostly during day-light hours when regularly scheduled monochrome programs were not being broadcast. The network's entry into regularly scheduled color-casting consisted of two daily daytime thirty minute shows: "Modern Homemakers" and "The World Is Yours." These two programs were sponsored by five participating advertisers who bought thirty and sixty-second time segments to display their products, much in the manner as present-day stationbreak commercials are **presented.**

Indeed, rough sledding was encountered by the network. The price of the receivers was a barrier to their purchase and, manufacturers were unable to reduce the price because of the diminutive demand. Due to the sparse audience advertisers were reluctant to pour money into color programming. This meant that color-telecasting would continue to operate on a limited basis, so that even those who could afford the \$1000 receivers were prone to forget the whole thing!

The Columbia Broadcasting System had invested heavily in color-TV with the view of strengthening their position as the number one television network. It was rapidly becoming apparent that they had invested unwisely. It would seem that CBS had found themselves on their own revolving wheel, slightly off-balance on a course that led them nowhere, yet, afraid to step off and risk being completely thrown off-balance!

In 1951 the federal government helped the network save face by ordering all color-TV set production halted to preserve scarce materials, as the nation faced an international crisis. Chromatic-TV was nearly

(Continued on Next Page)

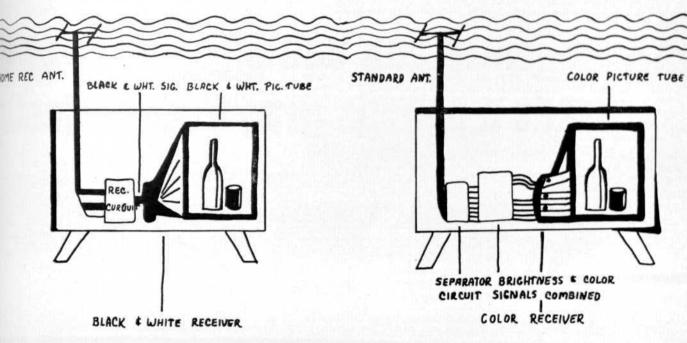
Compatible Color-Television Broadcast Signals-RCA. Reprinted from "New York Times," Section VI, February 28, 1954, Page 16.

Forgotten as CBS-TV made only token efforts to continue their color programming.

Coincident with the news of a Korean truce from the Far East, came the news from New York that HCA, with its subsidiary, the National Broadcasting Company, was ready to demonstrate its **perfected** "Dot Sequential" color transmission system. Early **entry** into practical color-TV followed when RCA shelved the "Dichroic Mirror" tube, and developed a new **all-electronic** direct-view color tube.

Sixty **newsmen** at an NBC-TV studio in Washington watched a program televised in color from Wardman Park Hotel on both color and monochrome sets. The reception was of a quality superior to the current CBS system, and the demonstration clearly proved its compatibility.

After a demonstration before the Federal Communications Commission, RCA petitioned the board for a license replacing CBS's "Field Sequential" system. An announcement was quick in coming. In August, 1953, the FCC officially authorized RCA's "Dot Sequential" system as the standard color-broadcast method.


Whereby the CBS system captured the scene with one color tube, RCA utilizes three tubes, or "guns," one for each primary color. The camera actually takes three separate pictures through one lens by means of a system of filter-mirrors. Each mirror traps one color and allows the two remaining colors to pass through. These three distinct color images are directed to the corresponding color tubes where they are converted into electrical impulses. They are now once again mixed, and the resulting signal is divided into two segments. The first segment goes to the 24 "adder." This unit blends the three combined **color** impulses to give the proper proportions of brightness, and constitutes the black and white segment of the color signal. The second portion, the "subcarrier," is fed to the "encoder" which combines the color signals proportionately to render the right values of "saturation" (intensity) and "hue" (color shading). The two signals are now recombined and transmitted together to the home receiver.

At the receiver the incoming signal is conducted to an electronic "separator" which serves to part **the** monochrome and color signals. If the receiver is a conventional black and white set, the "subcarrier," which conveys color information, is rejected and the remaining portion, when focused on the face of the tube, appears as a black and white image.

If the receiver is a compatible set, however, **the** subcarrier is fed to the "decoder" for separation into its three primary colors once again. These are relayed to the corresponding tube in the three-gun picture-tube, and then projected on the screen.

The face of the picture-tube is covered with 351,000 dots, or "phosphors," arranged in triangular groups. Each clot is capable of reacting to a certain color impulse delivered by the corresponding color **gun.**

Behind the tube-face is a metal screening mask with 117,000 minute holes focused on each triangular group of clots. Each gun shoots a stream of electrons in horizontal lines running from left to right on the face of the picture-tube. Therefore, when the beam oi each gun is uncovered by one of the minute holes in the mask, the corresponding color dot appears at that point on the screen.

The "Dot Sequential" system **as** developed by RCA was the product of three years study by the National Television System Committee under the supervision of RCA vice-president, Dr. Elmer W. **Engstrom.**

It would appear that color-television had come of age and would enjoy a prosperous future. Yet, as we shall see, this was not the case. In April, 1956 RCA forecast that sales of color receivers would reach the half-million mark by the end of the year, when actually only 130,000 units had been **purchased**. RCA and its subsidiary, the National Broadcasting **Company**, had lost 6.9 million dollars since its entry in color programming and color set production.

The lack of extensive color programming, high maintenance costs, and inconsistantly good **reception** have been factors leading to the public's lethargy in fully accepting TV's latest innovation. The biggest single hurdle, however, has been the high cost of color receivers. The three-gun picture-tube itself costs upwards of \$250 and its corresponding circuitry is very complex and also costly. It appears however, that there may be hope. A few of the 21-inch receivers on the market since June 1956, have been reduced in price to \$495. This is a reduction of 505? since the first compatible set was introduced early in 1954. This initial set in the color market had a 12-inch screen that sold for \$1000.

A new advance in color picture-tube engineering was announced a little over a year ago that may make possible the marketing of a \$250 or \$300 color receiver. Dr Ernest O. Lawrence, through the auspices of the Radiation Laboratory of the University of California, obtained a patent on his "Chromatron one-gun color picture-tube for the Chromatic Television Laboratories Inc. The new picture-tube does not utilize a shadow mask and is composed of a much simpler wiling arrangement than that present in **the** RCA units. The absence of the mask allegedly increases the picture brilliance by 70[']/, but the important factor is that the one-gun Lawrence tube can be manufactured for \$100 or less. Further, Chromatic Inc. engineers say the "Chromatron" is not limited in size, and that advance tests have given color registration and brightness levels far superior to the RCA units now being employed.

The Lawrence principle involves the **focusing of** the electron beam on the phosphoric screen **much** in the same manner as on the RCA tube, but with only one scanning gun. Instead of the phosphors being arranged in triangular groups **of** dots, they **are** "shot" out in five horizontal lines about 0.001 inches thick. Behind these lines is mounted **a** grid of vcr\ fine wires so arranged that alternating conduction wires can carry different electrical charges. The charge on the wires directs and focuses **the** electron beam so that, as the grid charge changes, the beam will strike one, two, or all three primary color phosphors. The grid changes depend upon the nature of the transmitted image.

The Lawrence tube, by nature of its relative simplicity, does not require the close dimensional tolerances necessary in its more complicated predecessor, thereby reducing the cost of manufacturing. Also, the color-selector grid will do away with the necessary color-encoder in present sets.

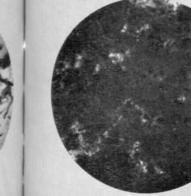
The development of Dr. Lawrence's "Chromatron" tube may be the answer to exorbitant receiver and maintenance costs, and poor receotion. Now NBC-TV . is doing their best to present colorcasting in quantity as well as quality. The network at present is following a policy of presenting at least one major evening show

(Continued on Page 52)

Now you can See why only Eagle Turquoise leads & pencils give you perfectly sharp drawings

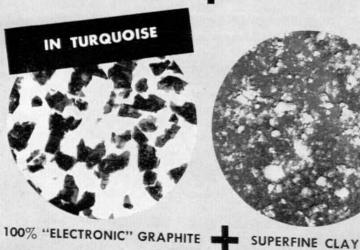
This Electron Microscope takes perfect pictures 7,500 times actual size -lets you see the startling difference between Eagle's "Electronic" Turquoise Lead and the lead in the usual quality drafting pencil.

> Photographs courtesy of Lodd Research Industries, Inc.


IN THE USUAL HIGH QUALITY DRAWING PENCIL **GRAPHITE LIKE THIS** CLAY LIKE THIS MAKES THIS LEAD STRUCTURE ... AND MARKS LIKE THIS

MAKES THIS LEAD STRUCTURE

Relatively large, irregular particles of graphite make a rough-edged line. Drawings will be inferior.


Tiny, more uniform particles deposit as a clean-edged, solid line. Drawings will be perfectly sharp, clearly defined.

> WRITE FOR FREE SAMPLE DEMONSTRATION KIT lincluding Turquoise wood pencil, Turquoise lead, and Turquoise "skeleton" lead) naming this magazine. Eagle Pencil Company, 703 East 13th Street, New York, N. Y.

... AND MARKS LIKE THIS

non-abrasive rubber.

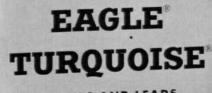
YOU ALWAYS GET PROVEN QUALITY FROM TURQUOISE DRAWING LEADS AND PENCILS

PROVEN GRADING-17 different formulae make sure you get exactly the line you expect-FROVEN ORADING TY uncreated from the safe you get exactly the line you expect from every Penci I, every time. PROVENDurabilityBecausecompact.eadstructuregivesoffnochunksofuse.ess"dust"toblowaway,Turquoisewearsdownmoresicwyx-soft,

PROVENNEEDLE-POINT STRENGTH-aselectronphotomicrographshows, Turquoiseleadstruc-

ture is finer-and therefore stronger. It holds a needle point under drawing pressures for long lines of unchanging width

• TURQUOISE LEAD HOLDERS: Hold any grade of Turquoise lead.


EAGLE "CHEMI + SEALED" TURQUOISE DRAWING

• TURQUOISE DRAWING LEADS:

Fit any standard lead holder. Grades 5B through 9H.

FAGLE TUROUOLSE 33

• TURQUOISE DRAWING PENCILS: [®] "Electronic" graphite. 17 grades, 6B through 9H.

PENCILS AND LEADS are the largest-selling in the United States!

CLUBS AND SOCIETIES

A. I. Ch. E.

The student section of the American Institute of Chemical Engineers has as its main objective to acquaint the Chemical engineering student to his professional society while he is still in school. Any student enrolled in chemical engineering can become a member.

The student section here at State has two meetings a term. The program for the last meeting was a talk on "Eonomics of Chemical Processes" given by Mr. G. H. Wesseman, who is employed by the Standard Oil Company of Indiana.

Last term two of **the** student members went to the A.I.Ch.E. Convention in Chicago. Their expenses were paid by the **Procter** and Gamble Company.

This year Michigan State has been chosen as the host for the 7th annual North Central Regional Conference of the Student Chapters of A.I.Ch.E. The chairman for the conference is Wes Rearick and working under him are, Grant juchartz and Miles Talbert.

The officers of A.I.Ch.E.:

President.	Charles Griffen
Vice President	Roderick MacKay
Secretary	
Treasurer	Gerald Knapp
Faculty Advisor	Dr. R. W. Ludt

Phi Lambda Tau

The Phi Lambda Tau Fraternity was founded at Michigan State College in 1925, to mark with distinction those who, as Engineering undergraduates, have demonstrated their administrative ability or have shown unusual initiative.

Undergraduates become **scholastically** eligible at the beginning of their Junior year if their scholastic average for the previous two years is favorable. Eligibility is also based upon such activities as campus organizations, social fraternities, campus politics, outside work, athletics, music, and publications.

Phi Lambda Tau is unique in that it has only one chapter and that being the one founded **at** Michigan State University. Some of the various activities that the members participate in are field trips, picnics. Engineering Exposition projects, banquets, and service functions such as campus tours and **aid to** activities sponsored by Professional Engineers.

The officers of Phi Lambda Tau are:

President	Jim Clock
Vice President D	uane Dolph
Treasurer Gle	nn Gardner
SecretaryRonald	d Hamelink
Corresponding Secretary Sta	anky Badelt
Faculty Advisor Prof. L. V	V. Nothstine

PHI LAMBDA TAU

Row 1: Izzo, Meinert, Bingley, Badelt, Clock, Gardner, Dolph, Fleming, VanVliet; Row 2: Wagner, Lake, Strobel, Feller, Taulbee, Hobolth, Larder, Bellinger; Row 3: Olsson, Schreihans, Lantz, Black, Smith, Wells, Cruise, Colby, Bierlein.

Pi Tau Sigma

Pi Tau Sigma **is a** national **honorary** mechanical engineering fraternity. The chapter here at State was installed in 1950 through the help of Professor L. C. Price and former Dean of Engineering, L. G. Miller.

To be eligible for membership you have to be in the top 25% of the Junior Class or the top 35% of **the** Senior Class. In the junior year only 17% can be taken in and 33% in the senior year. This means a good scholastic record is needed to be eligible but also the student is judged on leadership, personality, dependability and probable future success in mechanical engineering.

The out-going officers are Joe **Colucci**, President; Keith Salisbury, Vice President; Wayne Sebrell, Corresponding Secretary; Charles Kirchhoff, Recording Secretary and Richard McCormic, Treasurer.

New Officers for 1958-1959:

President	Jack Slocum
Vice President	John Sovis
Corresponding Secretary	Laverne Root
Recording Secretary	Jack Garter
Treasurer	Keith Wood
Faculty Advisor	P. J. Thorson

Tau Beta Pi

Tau Beta Pi is a national honorary For all engineers. To be eligible, a student must be in the top K of the Junior Class and have an all-college above 3.3. Seniors must be in the top $\frac{1}{10}$ of their class and have an all-college above a 3 point.

Each **fall term the** seniors arc taken in along with the three top students from the junior class. Winter term **the** rest **of the** juniors are taken in.

Tau Beta Pi meets three times a term. **The**) hold their meetings in their own room **on** the fourth floor of Olds Hall. Mr. Olds requested this room for them when he gave the money for the building.

Officers for Tau Beta Pi:

President	Lowell Smith
Vice President	Richard Plugge
Recording Secretary	Wayne Robertson
Corresponding Secretary . : .	Philip Cline
Treasurer	Robert LaFraugh

Faculty Advisors:

Mechanical Engineering C. H. Pesterfield
Electrical Engineering I. (). Ebert
Civil Engineering A. H. Leigh
Agricultural Engineering C. W. Hall
Faculty Treasurer I. E. Morse

PI TAU SIGMA

Row 1: Kuzma, McCormick, Colucci, Salisbury, Sebrell, Decker; Row 2: Moss, Taulbee, Plant, Latson, Halkides; Row 3: Arnold, Laham, Fairly, Legault, Tuer, Sovis. March, 1958

To engineering undergraduates in a whirl about the future...

> AT DOUGLAS, YOUR ASSIGNMENTS HAVE THE SCOPE THAT LETS YOU PROGRESS AT YOUR OWN PACE!

Going around in circles ? Chances are you're wondering what your future holds. At Douglas, longrange projects of tremendous scope assure a constant variety of assignments ... and the opportunity to expand your responsibilities. Douglas is headed by engineers who believe that promotion must come from within. They'll stimulate you to build a

rewarding future in your field.

For important career opportunities, write: c. c. lavene douglas Aircraft Company, box 6102-J santa Monica, California

turther with cn DOUGLAS

FIRST IN AVIATION

As an aid to students, THE SPARTAN ENGINEER presents:

FUDGE FACTORS

A complete conversion table for your notebook

THESE EIGHT PAGES MAY BE REMOVED AS A BOOKLET AND KEPT FOR READY REFERENCE.

Fudge Factors

MULTIPLY	BY	TO OBTAIN	MULTIPLY	BY	TO OBTAIN
		animaria	centimeter-grams	980.7 10 ⁻⁵	centimeter-dynes. meter-kilograms,
Abamperes	10 3×10 ¹⁰	amperes, statamperes,	centimeter-grams	7.233x10-5	pound-feet.
Abamperes	64.52	amperes per sq. inch.	centimeter-grams	0.01316	atmospheres.
abamperes per sq. cm	10	ampere-turns	centimeters of mercury	0.4461	feet of water.
abampere-turns	12.57	gilberts	centimeters of mercury	136.0 27.85	kgs. per square meter. pounds per sq. foot.
abampere-turns per cm	25.40	ampere-turns per inch	centimeters of mercury	0.1934	pounds per sq. inch.
abcoulombs	10	eoulombs.	centimeters per second	1.969	feet per minute.
abcoulombs	3x1010	stateoulombs	centimeters per second	0.03281 0.036	feet per second. kilometers per hour.
abcoulombs per sq. cm	64.52	coulombs per sq. inch.	centimeters per second centimeters per second	0.6	meters per minute.
abfarads	10 ^p 10 ¹⁶	farads	centimeters per second	0.02237	miles per hour.
abfarads	9x1020	microfarads. statfarads.	centimeters per second	3.728×10 ⁻⁴ 0.03281	miles per minute. feet per sec. per sec.
abfarada	10-9	henries	cms. per sec. per sec cms. per sec. per sec	0.03281	kms, per hour per sec.
abhenries	10-0	millihenries.	cms, per sec, per sec.	0.02237	miles per hour per sec.
abhenries	1/9x10-20	stathenries.	circular mils	5.067×10^{-6}	square centimeters. square inches.
abmhos per cm. cube	1.662×10^{2}	mhos per mil foot. megmhos per cm. cube.	circular mils	7.854×10^{-7} 0.7854	square mils.
abmhos per cm. cube	103		cord-feet	4 ft.x4 ft.x1 ft.	cubic feet.
abohms	10^{-15} 10^{-3}	megohms microhoms.	cords	8 ft.x4 ft.x4 ft.	cubic feet.
abohms	10-9	ohms.	coulombs	1/10	abcoulombs. statcoulombs.
abohms	1/9x10-20	statohms.	coulombs	3x10 ⁹ 0.01550	abcoulombs per sq. cm.
abohms per cm. cube	10-1	microhms per cm. cube.	coulombs per sq inch	0.1550	coulombs per sq. cm.
abohms per cm. cube	6.015x10-3	ohms per mil foot.	coulombs per sq. inch	4.650x10 ⁸	statcouls. per sq. cm.
abvolts	1/3x10-10	statvolts.	cubic centimeters	3.531×10 ⁻⁵	cubic feet. cubic inches.
abvolts	10-8	volts.	cubic centimeters	6.102×10^{-2} 10^{-6}	cubic meters.
Acres	43,560 4047	square feet. square meters,	cubic centimeters	1.308x10 ⁻⁶	cubic yards.
acres	1.562×10-3	square miles. •	cubic centimeters	2.642×10 ⁻⁴	gallons.
ACTES	5645.38	square varas.	cubic centimeters	10-3	liters. pints (liq.).
ACTES	4840	square yards.	cubic centimeters	2.113×10 ⁻³ 1.057×10 ⁻³	quarts (liq.).
acre-feet	43,560	cubic-feet. gallons.	cubic feet	2.832×104	eubic cms.
acre-feet	3.259x10 ⁵	24	cubic feet	1728	cubic inches. oubic meters.
amperes	1/10 3x10 ⁹	abamperes. statamperes.	cubic feet	0.02832	cubic yards.
amperes	6.452	amperes per sq. inch.	cubic feet	0.03704 7.481	gallons.
amperes per sq. cm.	0.01550	abamperes per sq. cm.	cubic feet	28.32	litare
amperes per sq inch	0.1550	amperes per sq. cm.	cubic feet	59.84	pints (liq.). quarts (liq.).
amperes per sq inch	4.650x10 ⁸	statamperes per sq. cm.	cubic feet	29.92 472.0	cubic cms. per sec.
ampere-turns	1/10	abampere-turns,	cubic feet per minute	0.1247	collong per sec.
ampere-turns	1.257	gilberts.	cubic feet per minute	0,4720	liters per second lbs. of water per min.
ampere-turns per cm.	2.540	ampere-turņs per in.	cubic feet per minute	62.4	cubic centimeters.
Ampere-turns per inch	0.03937	abampere-turns per cm.	cubic inches	16.39 5.787x10-4	enhic feet.
ampere-turns per inch	0.3937 0.4950	ampere-turns per cm.	cubic inches	1.639x10-5	mobic meters.
areas	0.02471	gilberts per cm.	cubic inches	2.143×10-5	cubic yards.
areas	100	acres. square meters.	cubic inches	4.329x10-3	gallons. liters.
atmospheres	76.0	cms. of mercury.	cubic inches	1.639x10 ⁻² 0.03463	pints (liq.).
atmospheres	29.92	inches of mercury.	cubic inches	0,03463	quarts (liq.). cubic centimeters
atmospheres	33.90 10,333	feet of water.	cubic meters	106	cubic feet.
atmospheres	14.70	kgs. per sq. meter. pounds per sq. inch.	cubic meters	35.31	cubic inches.
atmospheres	1.058	tons per sq. foot.	cubic meters	61,023 1,308	cubic yards.
			cubic meters	264.2	gallons.
Bars	9.870×10-7	atmospheres.	cubic meters	103	liters. pints (liq.).
Bars	1	dynes per sq. cm.	cubic meters	2113	warmen (110) la
Bars	0.01020 2.089x10 ⁻³	kgs, per square meter pounds per sq. foot.	cubic yards	1057 7.646x10 ⁵	cubic centimeters
Bars	1.450x10-5	pounds per sq. 100t.	cubic yards	27	cubic feet. cubic inches.
board-feet	144 sq. in.x1 in.	cubic inches.	cubic yards	46,656	cubic meters.
British thermal units	0.2530	kilogram-calories.	cubic yards	0.7646 202.0	gallons.
British thermal units	777.5	foot-pounds.	cubic yards	764.6	liters. pints (liq.).
British thermal units British thermal units	3.927×10-4 1054	horse-power-hours.	cubic yards	1616	
British thermal units	107.5	joules. kilogram-meters.	cubic yards cubic yards per minute	807.9	
British thermal units	2.928x10-4	kilowatt-hours.	cubic yards per minute	0.45 3.367	
B.t.u. per min	12.96	foot-pounds per sec.	cubic yards per minute	12.74	liters per second.
B.t.u. per min B.t.u. per min	0.02356 0.01757	horse-power,	Dava		hours.
B.t.u. per min	17.57	kilowatts, watts,	Days	24	minutes.
B.t.u. per sq. ft. per min	0,1220		Days	86,400	seconds.
bushels	1.244	watts per square inch. cubic feet.	decigrams	0.1	grams.
bushels	2150	cubic freet, cubic inches,	deciliters	0.1	liters. meters.
bushels	0.03524	cubic meters.	degrees (angle)	0.1 60	minutes.
bushels	4 64	pecks.	degrees (angle)	0.01745	radians.
bushels	32	pints (dry).	- degrees (angle)	3600	seconds. radians per second.
		quarts (dry)	degrees per second		radians per min. revolutions per min.
Centares	1	1	degrees per second	0.1667 0.002778	revolutions per
centigrams	0.01	square meters.	dekagrams	10	grams.
centiliters	0.01	grams.			liters.
centimeters		liters.	dekameters dollars (U.S.) dollars (U.S.) dollars (U.S.) dollars (U.S.)	10	francs (French);
centimeters	0.3937 0.01	inches.	dollars (U.S.)	5.182 4.20	marks (German).
centimeters	393.7	meters. mils.	dollars (U.S.)	0.2055	
centimeters	10	millimeters.			shillinga (as
centimeter-dynes	1.020x10-3	centimeter-grams.	drams	1 772	grams. ounces.
centimeter-dynes	1.020x10-5 7.376x10-5	meter-kilograms.	dynes	1 1.020×10 ⁻³	grams. poundals.
		pound-feet.	dynes	7.233×10-5	

MULTIPLY
dynesdynes per square cm
Ergs Ergs Ergs Ergs Ergs Ergs Ergs ergs per second ergs per second
Farads Farads Farads fet feet feet feet feet feet feet of water feet por minute feet per minute feet per minute feet per minute feet per minute feet per second feet per second foot-pounds foot-pounds foot-pounds foot-pounds per minute foot-pounds per minute foot-pounds per minute foot-pounds per minute foot-pounds per minute foot-pounds per second foot-pounds per second francs (French) france (French)
furlongs Gallons Gallo

BY	1
2.248x10-6	pb
9.486x10-11	E
1 7.376x10 ⁻⁸ 1.020x10 ⁻³	d f
9 200-10-11	j k k
1.020x10 ⁻⁸ 5.692x10 ⁻⁹ 4.426x10 ⁻⁰ 7.376x10 ⁻⁸ 1.241=10 ⁻¹⁹	B
7.376x10 ⁻⁸ 1.341x10 ⁻¹⁰	f
1.434x10-9 10-10	k
10-9 10 ⁶	an
9x10-11 6	5 f
30.48 12	ci in
0.3048	n v
$1/3 \\ 0.02950$	y a
0.8826 304.8	ii k
62.43 0.4335 0.5080	P P
0.5080 0.01667 0.01829	fe
0.01829 0.3048 0.01136	k m n
30.48 1.097	ci k
0.5921 18.29	k n
0.6818 0.01136	n n
1 30.48	P
1.097 0.3048	k n
0.6818 1.286×10 ⁻³	B
1.356x10 ⁷ 5.050x10 ⁻⁷	ei h
1.356 3.241x10 ⁻⁴	je
0.1383 3.766×10-7	k k
1.286x10-3	B
3.300x10 ⁻⁵ 3.241x10 ⁻⁴ 2.260x10 ⁻⁵ 7.717x10 ⁻²	k
2.260x10 ⁻⁵ 7.717x10 ⁻²	k B
7.717x10 ⁻² 1.818x10 ⁻³ 1.945x10 ⁻²	hiki
1.945x10 ⁻² 1.356x10 ⁻³ 0.193 0.811	ki
0.03865	p
40	r
3785 0.1337 231	CI CI
3.785x10-3 4.951x10-3	ci
3.785	li
4 2.228x10-3	que
0.06308	li
0.07958	al
2.021 0.1183 0.25	li
1	gi
0.06480 0.04167	gi
980.7 15.43	dy gr
10 ⁻³ 10 ³	ki m
0.03527 0.03215	10
0.07093 9.205×10-3	p p B
9 009-10-3	B
9.302x10 ⁻⁸ 980.7 7.233x10 ⁻⁵	fo

BY

T

TO OBTAIN
pounds. bars.
British thermal units. dyne-centimeters. foot-pounds. gram-centimeters. joules. kilogram-meters. B.t. units per minute. foot-pounds per sec. horse-power. kgcalories per min. kilowatts.
abfarads. microfarads. feet. centimeters. inches. meters. yards. atmospheres. inches of mercury. kgs. per square meter. pounds per sq. ft. pounds per sq. ft. pounds per sq. inch. centimeters per sec. feet per sec. kilometers per hour. meters per minute. miles per hour. knots per hour. meters per sec. kilometers per sec. kilometers per sec. miles per minute. miles per sec. kilometers per sec. kilometers per sec. miles per hour. miles per minute. miles per hour. miles per sec. per sec. meters per sec. per sec. miles per hr. per sec. miles per hr. per sec. miles per hr. per sec.
ergs. horse-power-hours.
joules. kilogram-calories. kilogram-meters kilogram-meters kilogram-meters korse-power. kgcalories per minute. horse-power. kgcalories per minute. horse-power. kgcalories per min. kilowatts. dollars (U.S.). marks (German). pounds sterling (Brit.). rods.
subic centimeters. subic feet. subic inches. subic inches. subic yeards. liters. subic yeards. liters per second. liters per second. liters per second. liters per second. liters per second. liters per second. sampere-turns. ampere-turns. per second. liters. pints (liq.). grains (av.). grains (troy). kilograms. milligrams. sunces. pounces. pounds. British thermal units. British thermal units.
oot-pounds.

	LY
gram-centimeters	
gram-centimeters	
gram-centimeters	
grams per cm grams per cu. cm.	
grams per cu. cm.	
grams per cu. cm. grams per cu. cm.	
e-ana per cu. cm.	
Hectares	
Hectares	
hectograms	
hectoliters	
hectometers	
hemispheres (sol.	angle)
hemispheres (sol.	angle)
hemispheres (sol.	angle)
henries	angre)
henries	
henries	
horse-power	
horse-power	
horse-power	**********
horse-power	
horse-power	
horse-power	
horse-power (boil	er)
horse-power (boil	er)
horse-power-hours	
hours	
Inches	
Inches	
Inches	
Inches of mercur;	y
Inches of mercury	
Inches of mercury	У
Inches of mercury	y
Inches of mercury Inches of water Inches of water Inches of water	y
Inches of water	
Inches of water	
Traches of whiter	
Inches of water .	
Inches of water .	
Joules	
Joules	
Joules Joules Joules Joules	
Joules Joules Joules Joules Joules	
Joules Joules Joules Joules	
Joules Joules Joules Joules Joules Joules	
Joules Joules Joules Joules Joules Joules Joules Joules Kilograms	
Joules Joules Joules Joules Joules Kilograms Kilograms	
Joules Joules Joules Joules Joules Joules Kilograms Kilograms	
Joules Joules Joules Joules Joules Kilograms Kilograms Kilograms	
Joules Joules Joules Joules Joules Joules Kilograms Kilograms	
Joules Joules Joules Joules Joules Kilograms Kilograms Kilograms Kilograms calories	
Joules Joules Joules Joules Kilograms Kilograms Kilograms Kilograms Kilogram calories kilogram-calories	
Joules Joules Joules Joules Joules Kilograms Kilograms Kilograms Kilograms calories kilogram-calories kilogram-calories	
Joules Joules Joules Joules Kilograms Kilograms Kilograms Kilograms Kilogram-calories kilogram-calories kilogram-calories kilogram-calories	
Joules Joules Joules Joules Joules Kilograms Kilograms Kilograms Kilograms Kilograms Kilograms Kilogram-calories kilogram-calories kilogram-calories kilogram-calories	
Joules Joules Joules Joules Kilograms Kilograms Kilograms Kilogram calories kilogram-calories kilogram-calories kilogram-calories kilogram-calories kilogram-calories kilogram-calories kilogram-calories	
Joules Joules Joules Joules Kilograms Kilograms Kilograms Kilograms Kilograms Kilogram-calories kilogram-calories kilogram-calories kilogram-calories kilogram-calories kilogram-calories kgcalories per n kgcalories per n	nin
Joules Joules Joules Joules Kilograms Kilograms Kilograms Kilograms Kilograms Kilograms Kilogram-calories kilogram-calories kilogram-calories kilogram-calories kilogram-calories kilogram-calories kejcalories per n kgcalories per n	nin
Joules Joules Joules Joules Joules Kilograms Kilograms Kilograms Kilogram-calories kilogram-calories kilogram-calories kilogram-calories kilogram-calories kilogram-calories kilogram-calories kilogram-calories kilogram-calories kgcalories per n kgcalories per n	nin
Joules Joules Joules Joules Kilograms Kilograms Kilograms Kilograms Kilogram-calories kilogram-calories kilogram-calories kilogram-calories kilogram-calories kilogram-calories per n kgcalories per n	nin
Joules Joules Joules Joules Joules Kilograms Kilograms Kilograms Kilograms Kilogram-calories kilogram-calories kilogram-calories kilogram-calories kg_calories per n kgcalories per n	nin
Joules Joules Joules Joules Soules Kilograms Kilograms Kilograms kilogram-calories kilogram-calories kilogram-calories kilogram-calories kilogram-calories kilogram-calories per n kgcalories per n	nin
Joules Joules Joules Joules Joules Kilograms Kilograms Kilograms Kilogram-calories kilogram-calories kilogram-calories kilogram-calories kilogram-calories kilogram-calories kilogram-calories kilogram-calories kg_calories per n kgcalories per n	nin
Joules Joules Joules Joules Joules Kilograms Kilograms Kilograms kilogram-calories kilogram-calories kilogram-calories kilogram-calories kilogram-calories kilogram-calories kilogram-calories kilogram-calories kilogram-calories kilogram-calories kilogram-calories kilogram-melers _ kilogram-meters _ kilogram-meters _ kilogram-meters _ kilogram-meters _	nin
Joules Joules Joules Joules Joules Kilograms Kilograms Kilograms Kilograms Kilogram-calories kilogram-calories kilogram-calories kilogram-calories kilogram-calories kilogram-calories kilogram-calories kilogram-calories kilogram-calories kilogram-calories kilogram-calories kilogram-calories kilogram-meters kilogram-meters kilogram-meters kilogram-meters kilogram-meters kilogram-meters	nin
Joules Joules Joules Joules Joules Kilograms Kilograms Kilograms kilogram-calories kilogram-calories kilogram-calories kilogram-calories kilogram-calories kilogram-calories kilogram-calories kilogram-calories kilogram-calories kilogram-calories kilogram-calories kilogram-meters kilogram-meters kilogram-meters kilogram-meters kilogram-meters	nin nin ter
Joules Joules Joules Joules Joules Kilograms Kilograms Kilograms Kilogram-calories kilogram-calories kilogram-calories kilogram-calories kilogram-calories kilogram-calories kilogram-calories kilogram-calories kilogram-calories kilogram-calories kilogram-calories kilogram-calories kilogram-calories kilogram-calories kilogram-calories kilogram-calories kilogram-meters kilogram-meters kilogram-meters kilogram-meters kilogram-meters	nin
Joules Joules Joules Joules Joules Kilograms Kilograms Kilograms Kilograms Kilogram-calories kilogram-calories kilogram-calories kilogram-calories kilogram-calories kilogram-calories kilogram-calories kilogram-calories kilogram-calories kilogram-calories kilogram-calories kilogram-calories kilogram-meters kilogram-meters kilogram-meters kilogram-meters kilogram-meters kilogram-meters	nin
Joules Joules Joules Joules Joules Joules Kilograms Kilograms Kilograms Kilogram-calories kilogram-calories kilogram-calories kilogram-calories kilogram-calories kilogram-calories kilogram-calories kilogram-calories kilogram-calories kilogram-meters squared kgcalories per n kgcalories per n kgcalories per n kgcalories per stilogram-meters kilogram-meters ki	nin
Joules Joules Joules Joules Joules Kilograms Kilograms Kilograms Kilogram-calories kilogram-calories kilogram-calories kilogram-calories kilogram-calories kilogram-calories kilogram-calories kilogram-calories kilogram-calories kilogram-calories kilogram-calories kilogram-calories kilogram-meters - kilogram-meters kilogram-meters kilogram-meters kilogram-meters kilogram-meters kilogram-meters kilogram-meters kilogram-meters kilogram-meters kilogram-meters kilogram-meters kilogram-meters kilogram-meters kilogram-meters kilogram-meters kilogram-meters kilogram-meters kilogram-meters - kilogram-meters kilogram-meters - soultor me kgs. per cubic me kgs. per cubic me kgs. per cubic me kgs. per cubic me	ter ter ter ter ter ter
Joules Joules Joules Joules Joules Kilograms Kilograms Kilograms calories kilogram-calories kilogram-calories kilogram-calories kilogram-calories kilogram-calories kilogram-calories kilogram-calories kilogram-calories kilogram-calories kilogram-calories kilogram-calories kilogram-calories kilogram-meters - kilogram-meters - ks, per cubic me	ter
Joules Joules Joules Joules Joules Kilograms Kilograms Kilograms Kilogram-calories kilogram-calories kilogram-calories kilogram-calories kilogram-calories kilogram-calories kilogram-calories kilogram-calories kilogram-calories kilogram-calories kilogram-calories kilogram-calories kilogram-meters kgcalories per n kgcalories per ch kgcalories per n kgcalories per n kgcalories per n kgcalories per n kg per cubic me kg per squate m kg per squate m	hin
Joules Joules Joules Joules Joules Kilograms Kilograms Kilograms calories kilogram-calories kilogram-calories kilogram-calories kilogram-calories kilogram-calories kilogram-calories kilogram-calories kilogram-calories kilogram-calories kilogram-calories kilogram-calories kilogram-calories kilogram-meters - kilogram-meters - kilogram-m	ter
Joules Joules Joules Joules Joules Kilograms Kilograms Kilograms calories kilogram-calories kilogram-calories kilogram-calories kilogram-calories kilogram-calories kilogram-calories kilogram-calories kilogram-calories kilogram-calories kilogram-calories kilogram-calories kilogram-calories kilogram-meters - kilogram-meters - kilogram-m	ter
Joules Joules Joules Joules Joules Kilograms Kilograms Kilograms Kilogram-calories kilogram-calories kilogram-calories kilogram-calories kilogram-calories kilogram-calories kilogram-calories kilogram-calories kilogram-calories kilogram-calories kilogram-calories kilogram-calories kilogram-meters kilogram-mete	ter ter ter ter ter ter ter ter ter
Joules Joules Joules Joules Joules Kilograms Kilograms Kilograms Kilogram-calories kilogram-calories kilogram-meters squared kilogram-meters skilogram-meters kilogram-meters kilogram kilogram kilogram kilogram kilogram kilogram kilogram kilogram kilogram kil	ter ter ter ter ter ter ter ter ter
Joules Joules Joules Joules Joules Kilograms Kilograms Kilograms kilogram-calories kilogram-calories kilogram-calories kilogram-calories kilogram-calories kilogram-calories kilogram-calories kilogram-calories kilogram-calories kilogram-calories kilogram-meters kgcalories per n kgcalories per n kg calories per n kg calories per n kg calories per n kg calories per n kg per squared kg per cubic me kg per square m kg per square m	ter ter ter ter ter ter ter ter ter
Joules Joules Joules Joules Joules Kilograms Kilograms Kilograms Kilograms Kilograms Kilogram-calories kilogram-calories kilogram-calories kilogram-calories kilogram-calories kilogram-calories kilogram-calories kilogram-calories kilogram-calories kilogram-meters sulogram-meters skilogram-meters kilogram-meters kilogram-me	ter ter ter ter ter ter ter ter ter
Joules Joules Joules Joules Joules Kilograms Kilograms Kilograms kilogram-calories kilogram-calories kilogram-calories kilogram-calories kilogram-calories kilogram-calories kilogram-calories kilogram-calories kilogram-calories kilogram-calories kilogram-meters kgcalories per n kgcalories per n kg calories per n kg calories per n kg calories per n kg calories per n kg per squared kg per cubic me kg per square m kg per square m	ter ter ter ter ter ter ter ter ter

BY	TO OBTAIN			
9.807×10 ⁻³ 2.344×10 ⁻⁸ 10 ⁻⁵ 5.600×10 ⁻³ 62.43 0.03613 3.405×10 ⁻⁷	ioules, kilogram-calories, kilogram-meters, pounds per inch, pounds per cubic foot, pounds per cubic inch, pounds per mil-foot,			
$\begin{array}{c} 2.471\\ 1.076 \times 10^5\\ 100\\ 100\\ 100\\ 0.5\\ 4\\ 4\\ 6.283\\ 10^9\\ 10^9\\ 10^9\\ 1/9 \times 10^{-11}\\ 42.44\\ 33.000\\ 550\\ 1.014\\ 10.70\\ 0.7457\\ 745.7\\ 33.520\\ 9.804\\ 2547\\ 1.98 \times 10^6\\ 641.7\\ 2.688 \times 10^6\\ 641.7\\ 2.737 \times 10^5\\ 0.7457\\ 60\\ 3600 \end{array}$	acres. square feet, grams. Hters. meters. watts. sphere. spherical right angles. steradians. abhenries. millihenries. B.t., vanits per min. foot-pounds per min. foot-pounds per sec. horse-power (metric) kg-calories per min. kilowatts. B.t.u. per hour. kilowatts. British thermal units. foot-pounds. joules. kilogram-calories. kilogram-meters. kilowatt-hours. minutes. seconds.			
$\begin{array}{c} 2.540\\ 10^3\\ 0.3\\ 0.03342\\ 1.133\\ 345.3\\ 70.73\\ 0.4912\\ 0.002458\\ 25.40\\ 0.07355\\ 25.40\\ 0.5781\\ 5.204\\ 0.03613\\ 9.486\times10^{-4}\\ 10^7\\ 0.7376\\ 2.390\times10^{-4}\\ 0.1020\\ 2.778\times10^{-4}\\ \end{array}$	centimeters, mila. varas. feet of water. kgs. per square meter. pounds per square fi. atmospheres. inches of mercury. kgs. per square in. pounds per square in. pounds per square fi. pounds per square fi. pounds per square in. British thermal units. ergs. foot-pounds. kilogram-meters watt-hours.			
$\begin{array}{c} 2.772 \times 10^{-3} \\ 980.665 \\ 10^3 \\ 70.93 \\ 2.2046 \\ 1.102 \times 10^{-3} \\ 3.086 \\ 1.558 \times 10^{-8} \\ 4183 \\ 426.6 \\ 1.162 \times 10^{-3} \\ 5.143 \\ 0.06972 \\ 2.373 \times 10^{-8} \\ 0.3417 \\ 9.302 \times 10^{-5} \\ 9.807 \times 10^{7} \\ 7.233 \\ 9.807 \\ 10^{-8} \\ 0.06243 \\ 3.613 \times 10^{-5} \\ 3.405 \times 10^{-7} \\ 3.244 \times 10^{-3} \\ 2.724 \times 10^{-6} \\ 10^{-8} \\ 0.06243 \\ 3.613 \times 10^{-5} \\ 9.807 \\ 3.281 \times 10^{-5} \\ 10^{6} \\ 10^{5} \\ 10^{5} \\ 10^{5} \\ 10^{5} \\ 3281 \end{array}$	dynes. grams. poundals. poundals. pounds. tons (short). British thermal units. foot-pounds. horse-power-hours. joules. kilowatt.hours. foot-pounds per sec. horse-power. kilowatts. pounds-feet squared. pounds-feet squared. pounds-feet squared. grams lee to start foot-pounds. joules. kilowatt-hours. grams per cubic foot. pounds per fot. atmospheres. bars. feet of water. inches of mercury. pounds per square ft. pounds per square ft. po			

10⁵ 3281 10³ (Continued on Page 36)

What's doing

The development of more advanced, far more powerful aircraft engines depends to a high degree on the development of new and improved materials and methods of processing them. Such materials and methods, of course, are particularly important in the nuclear field.

at Pratt & Whitney Aircraft

At Pratt & Whitney Aircraft, the physical, metallurgical, chemical and mechanical properties of each new material are studied in minute detail, compared with properties of known materials, then carefully analyzed and evaluated according to their potential usefulness in aircraft engine application.

The nuclear physics of reactor materials as well as penetration and

effects of radiation on matter are important aspects of the nuclear reactor program now under way at P & W A. Stress analysis by strain gage and X-ray diffraction is another notable phase of investigation.

in the field of Materials Engineering

In the metallurgical field, materials work involves studies of corrosion resistance, high-temperature mechanical and physical properties of metals and alloys, and fabrication techniques.

Mechanical-testing work delves into design and supervision of test equipment to evaluate fatigue, wear, and elevated-temperature strength of materials. It also involves determination of the influence of part design on these properties. In the field of chemistry, investigations are made of fuels, high-temperature lubricants, elastomeric compounds, electro-chemical and organic coatings. Inorganic substances, too, must be prepared and their properties determined.

While materials engineering assignments, themselves, involve different types of engineering talent, the field is only one of a broadly diversified engineering program at Pratt & Whitney Aircraft. That program — with other far-reaching activities in the fields of mechanical design, aerodynamics, combustion and instrumentation — spells out a gratifying future for many of today's engineering students.

Engineer measures residual stress in a compressor blade non-destructively, using X-ray diffraction. Stress analysis plays important part in developing advanced aircraft engine designs.

Pratt & Whitney Aircraft operates a completely self-contained engineering facility in East Hartford, Connecticut, and is now building a similar facility in Palm Beach County, Florida. For further information about engineering careers at Pratt & Whitney Aircraft, write to Mr. F. W. Powers, Engineering Department.

The important effects of gases on the properties of metals have been increasingly recognized. Pratt & Whitney chemists are shown setting up apparatus to determine gas content of materials such as titanium alloys. P & W A engineer uses air jet to vibrate compressor blade at its natural frequency, measuring amplitude with a cathetometer. Simi-

lar fatigue tests use electromagnetic excitation.

Induction melted heat of high-temperature alloy being poured in P & W A's experimental foundry. Molten metal is strained into large water tank, forming metal shot which is remelted and cast into test specimens and experimental parts. Development and evaluation of improved high-temperature alloys for advanced jet engines is one of the challenges facing metallurgists at P & W A.

FUDGE FACTORS


(Continued from Page 33)

MULTIPLY	BY	TO OBTAIN	MULTIPLY	BY	TO OBTAIN
kilometers	0.6214	miles.	microhuns per cm. cube	6.015	ohms per mil foot.
kilometers	1093.6	yards.	microhms per inch cube	2.540	microhoms p. cm. cube.
kilometers per hour	27.78	centimeters per sec.	microns	10-0	meters.
kilometers per hour	54.68	feet per minute.	miles	1.609x10 ⁵	centimeters.
kilometers per hour	0.9113	feet per second.	miles	5280 1.6093	feet.
kilometers per hour	0.5396 16.67	knots per hour. meters per minute.	miles	1760	kilometers. yards.
kilometers per hour	0.6214	miles per hour.	miles	1900.8	Varas.
kms. per hour per sec	27.78	cms. per sec. per sec.	miles per hour	44.70	centimeters per sec.
kms, per hour per sec.	0.9113	ft. per sec. per sec.	miles per hour	88	feet per minute.
kms. per hour per sec.	0.2778	meters per sec. per sec.	miles per hour	1.467	fect per second.
kms. per hour per sec	0.6214	miles per hr. per sec.	miles per hour	1.6093	kilometers per hour.
kiloweters per minkilowatta	60	kilometers per hour.	miles per hour miles per hour	0.8684 26.82	knots per hour.
kilowatta	56.92 4.425x104	B.t.u. units per min. foot-pounds per min.	miles per hour per sec.	44.70	meters per minute. cms. per sec. per sec.
kilowatta	737.6	foot-pounds per sec.	miles per hour per sec	1.467	feet per sec. per sec.
kilowatta	1.341	horse-power.	miles per hour per sec.	1.6093	kms. per hour per sec.
kilowatta	14.34	kgcalories per min.	miles per hour per sec.	0.4470	M. per sec. per sec.
kilowatta	103	watts.	miles per minute	2682	centimeters per sec.
kilowatt-hours	3415	British thermal units.	miles per minute	88	feet per second.
kilowatt-hourskilowatt-hours	2.655×10 ^a 1.341	foot-pounds. horse-power-hours.	miles per minute	$1.6093 \\ 0.8684$	kilometers per min.
kilowatt-hours	3.6x10 ⁶	joules.	miles per minute	60	knots per minute, miles per hour.
kilowatt-houra	860.5	kilogram-calories.	and par minute ansatzers	00	mnes per nour.
kilowatt-hours	3.671x10 ⁵	kilogram-meters.	milligrams	10-3	grams.
knots	6080	feet.	millihenries	100	abhenries.
knots	1.853	kilometers,	millihenries	10-3	henries,
knots	1.152	miles.	millihenries	1/9x10-14	stathenries.
knots per hour	2027	yards.	milliliters	10-3	liters.
knots per hour	51.48	centimeters per sec.	millimeters	0.1	centimeters.
knots per hour	1.689	feet per sec. kilometers per hour.	millimeters	0.03937 39.37	inches. mils.
knots per hour	1.152	miles per hour.	mils	0.002540	centimeters.
		gran structs	mils	10-3	inches.
Lines per square cm.	1	gausses.	miner's inches	1.5	cubic feet per min.
lines per square inch	0.1550	gausses.	minutes (angle) minutes (angle)	2.909x10-4	radians.
links (engineer's) links (suveyor's)	12	inches.	minutes (angle)	60	seconds (angle).
liters	7.92	inches.	months'	30.42	days.
liters	10 ⁸ 0:03531	cubic centimeters.	months	730	hours.
litera	61.02	cubic feet. cubic inches.	months	43,800 2.628x10 ⁶	minutes. seconds.
liters	10-3	cubic meters.	myriagrams	10	kilograms.
liters	1.308x10-3	cubic yards.	myriameters	10	kilometers.
liters	0.2642	gallons	myriawatts	10	kilowatts.
litera	2.113	pints (liq.).		1992.0	
liters per minute	1.057	quarts (liq.).	Ohms	109	abohms.
liters per minute	5.855x10-4 4.403x10-8	cubic feet per second.	Ohms	10-0	megohms.
log ¹⁰ N	2.303	gallons per second. logio N or In N.	Ohms	108	microhms.
logio N or In N		Jogio N or In N.	ohms per mil foot	1/9x10-11	statohms. abohms per cm. cube.
lumens per sq. ft.	0.4343	logio N.	ohms per mil foot	.166.2 0.1662	microhms per cm. cube.
tomens per ad. Au	1	foot-candles.	ohms per mil foot	0.06524	microhms per in. cube.
Marks (German)	0.238	1.11	ounces	8	drams.
Marks (German)	1.233	dollars (U.S.).	ounces	437.5	grains.
Marks (German)	0.04890	francs (French), pounds sterling (Brit.).	ounces	28.35	grams.
maxwells	10-8	'kilolines.	ounces (fluid)	0.0625	pounds.
megalines	108	maxwells.		1.805	cubic inches.
megmhos per cm. cube megmhos per cm. cube	10-3	abmhos per cm. cube,	Ounces (trov)	0.02957	liters. grains (troy).
megmhos per cm. cube	2.540	megmhos per in, cube.		480 31.10	orroms.
megmhos per inch cube	0.1662 0.3937	mhos per mil foot.		20	pennyweights (troy).
megohms	100	megmhos per cm. cube, ohms.	Connees (troy)	0.08333	nounde (troy).
meters	100	centimeters.	ounces per square inch	0.0625	pounds per sq. inch.
meters	3.2808	feet.	Barranticht (trait		
meters	39.37	inches.	Pennyweights (troy) Pennyweights (troy)	24	grains (troy).
meters	10-8	kilometers.	Pennyweights (troy)	1.555	grams. ounces (troy).
meters	103	millimeters,	perches (masonry)	0.05	cubic feet.
meter-kilograms	1.0936 9.807x107	yards.	pints (dry)	24.75 33.60	cubic inches.
	105	centimeter-dynes. centimeter-grams.	pints (liquid)	28.87	cubic inches.
meter-khograma	7.233	Dound-feet	poundals	13,826	dynes.
meters per minute	1.667	centimeters per sec.	poundals	14.10	grams.
meters per minute	3.281	leet per minute.	poundals	0.03108	pounds.
meters per minute	0.05468	feet per second.	pounds	444,823	dynes.
meters per minute	0.03	kilometers per hour	pounds	7000	grains. grams.
meters per second	0.03728	miles per hour.	pounds	453.6	ounces.
	1968 3.284	feet per minute.		16 32.17	noundals.
	3.0	feet per second. kilometers per hour.		0.8229	pounds (av.).
	0.06	Kilometers ner min		1.356x107	centimeter-dynco,
meters per second meters per second	2.237	miles per hour		13,825	centimeter-grams.
	0.03728	miles per minute.		0.1383	meter-kilograms.
	3.281	IEEE DET SEC TOX COS	pounds-feet squared	421.3	kgscms. squared. pounds-ins. squared.
	3.6 2.237	kms, per hour per see	Pounds-inches sourced	144	
	6.015x10-3	miles per hour ner nos	Dounds-inches sourced	2.926 6.945x10 ⁻⁸	pounds-feet squared.
	6.015	apmnos ner om make	POUNDS OF Water	0:01602	cubic feet.
	15.28	megmhos per cm. cube.	pounds of water	27.68	cubic inches.
	10-15	megmhos per in. cube, abfarads,	Pounds of Water	0.1198	1000
microfarads	10-0	farads.	DOUDDE OF WATON New min	2669x10-4	cubic feet per sec.
	9x10 ⁵	statfarads.		0.01602	grams per cubic meter.
	10-0	grams.		16.02	grams per cubic meter. kgs. per cubic inch. pounds per cubic inch.
	10-6	liters.	pounds per cubic foot	5.787×10-4	
	10 ⁿ 10 ⁻¹²	abohms.	Dounds per cubic inch	5.456x10-9	
	10-12	megohms.	pounds per cubic inch	27.68	
	1/9x10-17	ohms. statohms.	pounds per cubic inch	2.768x10 ⁴ 1728	
microhms per cm. cube	108	abohms per cm. cube.		9.425x10-6	pounds per mit room
ber cm. cube	0.3937	microhms p. in. cube.		1.488	kgs, per meters
			pounds per inch		grams per cm.

Spartan Engineer

MULTIPLY	BY	TO OBTAIN	MULTIPLY	вү	TO OBTAIN
pounds per mil foot	2.306x10 ⁶	grows per suble an	square millimeters	0.01	square centimeters.
pounds per square foot	0.01602	grams per cubic cm. feet of water.	square millimeters	1.550x10-3	square inches.
pounds per square foot	4.882	kgs. per square meter.	square mils	1.273	circular mils.
pounds per square foot	6.944x10-3	pounds per sq. inch.	square mils	6.452x10-*	square centimeters.
pounds per square inch	0.06804	atmospheres.	square mils	10-6	square inches.
pounds per square inch	2.307	feet of water.	square varas	.0001771	acres.
pounds per square inch .	2.036	inches of mercury.	square varas	7,716049	square feet.
pounds per square inch	703.1	kgs. per square meter.	square varas	.0000002765	square miles.
pounds per square inch	144	pounds per sq. foot.	square varas	.857339	square yards.
and the second sec	1212		square yards	2.066×10-4	acres.
Quadrants (angle)	90	degrees.	square yards	0.8361	square feet. square meters.
Quadrants (angle)	5400	minutes.	square yards	3.228×10-7	square miles,
Quadrants (angle)	$1.571 \\ 67.20$	radians.	square yards	1.1664	square varas.
quarts (dry) quarts (liq.)	57.75	cubic inches.	statamperes	$1/3 \times 10^{-10}$	abamperes.
quintals	100	cubic inches.	statamperes,	$1/3 \times 10^{-9}$	amperes.
quires	25	sheets.	statcoulombs	$1/3 \times 10^{-10}$	abcoulombs.
		and con-	statfarads	1/3x10 ⁻⁹ 1/9x10 ⁻²⁰	coulombs.
Radians	57.30	degrees.	statfarads	1/9x10-11	abfarads. farads.
Radians	3438	minutes.	statfarads	1/9x10-5	microfarads.
Kadians	0.637	quadrants.	stathenries	9x1020	abhenries.
radians per second	57.30	degrees per second.	stathenries	9x10 ¹¹	henries.
radians per second	0.1592	revolutions per second.	stathenries	9x1014	millihenries.
radians per second radians per sec. per sec	9.549 573.0	revolutions per min.	statohms	9×1020	abohms.
radians per sec. per sec.	9.549	revs. per min. per min.	statohms	9x10 ⁵	megohms.
radians per sec. per sec	0.1592	revs. per min. per sec. revs. per sec. per sec.	statohms	9x10 ¹⁷ 9x10 ¹¹	microhms.
reams	500	sheets.	statvolts	3x10 ¹⁰	ohms. abvolts.
revolutions	360	degrees.	statvolts	300	volts.
revolutions	4	quadrants.	steradians	0.1592	hemispheres.
revolutions	6.283	radians.	steradians	0.07958	spheres.
revolutions per minute	6	degrees per second.		0.6366	spherical right angles.
revolutions per minute	0.1047	radians per second.	steres	103	liters.
revs. per min. per min	0.01667 1.745x10 ⁻³	revolutions per sec.	(1	abs. temp. (degs. C.).
icvs, per min, per min,	0.01667	rads, per sec. per sec. revs, per min, per sec.	Temp. (degs. C.) +273 Temp. (degs. C.) +17.8	1.8	temp. (degs Fahr.).
revs. per min. per min	2.778×10-4	revs. per sec. per sec.	temp (degs $F_{\rm c}$) +460	1	abs. temp. (degs. F.).
revolutions per second	360	degrees per second.	temp (degs. F.) +460 temp. (degs. F.) -32	5/9	temp. (degs. Cent.).
revolutions per second	6,283	radians per second.	tons (long)	1016	kilograms.
revolutions per second	60	revs. per min.	tons (long)	2240	pounds.
revs, per sec. per sec.	6.283	rads, per sec. per sec.	tons (metric)	103	kilograms.
revs. per sec. per sec	3600	revs. per min. per min.	tons (metric)	2205 907.2	pounds. kilograms.
revs. per sec. per sec	60 16.5	revs. per min. per sec.	tons (short)	2000	pounds.
rods	16.5	feet.	tons (short) per sq. ft.	9765	kgs. per square meter.
Seconds (angle)	4.848×10-6	radians.	tons (short) per sq. ft	13.89	pounds per sq. inch.
spheres (solid angle)	12.57	steradians.	tons (short) per sq. in	1.406x10 ⁶	kgs. per square meter.
spherical right angles	0.25	hemispheres.	tons (short) per sq. in	2000	pounds per sq inch.
spherical right angles	0.125	spheres.			
spherical right angles	1.571	steradians.	Varas	2.7777 33,3333	feet. inches.
square centimeters	1.973×10^{5}	circular mils.	Varas	.000526	miles.
square centimeters	1.076×10-3	square feet.	Varas	.9259	yards.
square centimeters	$0.1550 \\ 10^{-0}$	square inches. square meters.	volts	108	abvolts.
	100	square millimeters.	volts	1/300	statvolts.
og, cms,-cms pod	0.02402	sq. inches-inches sqd.	volts per inch	3.937x10 ⁷	abvolts per cm.
odnare rest	2.296x10-5	acres.	volts per inch	1.312x10-3	statvolts per cm.
aquare leet	929.0	square centimeters.		0.05692	B.t.u. units per min.
square feet	144	square inches.	Watts	107	ergs per second.
aquare leet	0.09290	square meters.	Watts	44.26	foot-pounds per min.
aquare reet	3.587x10-5	square miles. square varas.	Watts	0.7376	foot-pounds per sec.
square feetsquare feet	.1296	square varas.	Watts	1.341×10-3	horse-power.
og, reet-reet sod	2.074×104	sq. inches-inches sqd.	Watts	0.01434 10 ⁻³ d	kgcalories per min. kilowatts.
	1.273x10 ⁶	circular mils.	Watts	3,415	British thermal units.
	6.452	square centimeters.	watt-hours	2655	foot-pounds.
	6.944x10 ⁻³	square feet.	watt-hours	1.341×10-3	horse-power-hours.
	106	square mils.	watt-hours	0.8605	kilogram-calories.
-quale inches	645.2	square millimeters.	watt-hours	367.1	kilogram-meters.
sq. inches-inches sqd.	41.62 4.823×10 ⁻⁵	sq. cmscms. sqd. sq. ftfeet sqd.	watt-hours	10-3	kilowatt-hours. maxwells.
square kilometers	4.823×10 -	acres.	webers	10 ⁸ 168	hours.
	10.76x10ª	square feet.	weeks	10,080	minutes.
	108	square meters.	weeks	604,800	seconds.
	0.3861	square miles.	weeks		the second s
	1.196x10 ⁶	square yards.	Yards	91.44	centimeters.
	2.471x10-4	acres.	Vards	3	feet.
	10.764	square feet.	Vards	36	inches, meters,
	3.861x10-7	square miles. square yards.	Vards	0.9144 1.08	varas.
square meters	1.196 640	acres.	Yards	365	days.
	27.88x10 ⁶	square feet.	years (common)	8760	hours.
	2.590	square feet. square kilometers.	years (common)	366	days.
	3,613,040,45	square varas,	years (leap)	8784	hours.
	3.098×10^{6}	square yards.	years (nearly assessed		
square millimeters	1.973x10 ³	circular mils.			
		1			

These conversion factors first appeared in the November'54 and January '55 issues of the CITY COLLEGE VECTOR.

Edited by Norm Dill

plant was understood from at least the beginning of the 19th century, neither steam nor gas turbines wire built during most of that century. Instead, the reciprocating steam engine was developed early and remained for many years the dominant type of power plant. Probably the high operating speeds required for large turbine outputs and high efficiencies were excessive for the materials and bearings of the day. Nor was theory, especially as it pertained to turbine nozzles, adequate to provide a good foundation for practical design.

Early in the 20th **century**, **however**, the steam turbine was perfected; and in a few years it had almost completely superseded the **reciprocating** steam engine. You might logically expect parallel development of the gas turbine. On the contrary, almost contemporaneously with the **perfection** of the steam turbine, development of the reciprocating internal combustion engine began. And many years passed before attention turned to the gas turbine.

Industry became interested in the industrial possibilities of the gas turbine as a result of a doctorate thesis written by Sanford A. Moss in 1900. Dr. Moss

Today's Most Important New Prime Mover

Development in aircraft gas-turbines has been due to new metallurgical and manufacturing techniques.

OVER 2000 years ago man successfully harnessed the energy in an expanding gas—in effect, discovering the principle of the gas turbine. Since 130 B.C., when Hero of Egypt built the first gas turbine-a small, hot-air driven toy carousel—men have continued to improve upon his idea.

During the 16th century the turbine principle was applied to turn a roasting spit. This was the first practical application of the gas turbine.

On November 30, 1791, shortly after the close of the American Revolution, the British Patent Office issued patent No. 1833 to John Barber. This patent described a gas-turbine power plant that included in elementary form all the principal components of the modern plant. Yet until about 1940, few engineers took this type of power plant seriously-the average Person still thinks of it as a modern invention.

The principle of the turbine itself dates back to antiquity. And although it's apparent from Barber's Patent that the principle of the gas-turbine power was given facilities in Schenectady to continue his research and development work on turbosuperchargers and gas turbines.

Because of its greater ease of **manufacture** and correspondingly decreased cost for low pressure ratios, the centrifugal type progressed much more rapidly than axial-flow compressors. From 1910 onward a large number of centrifugal compressors were built for blast-furnace and other industrial applications. During the closing days of World War I, the centrifugal compressor was selected for the turbosupercharger —the immediate predecessor of the aircraft gas—turbine power plant. Meanwhile, although Sir Charles Algernon Parsons had built a few axial-flow compressors in the 1900 to 1910 period, for many years development of this type proceeded slowly.

Engineers' interest in the independent gas-turbine power plant didn't lag while the steam turbine and the reciprocating internal combustion engine were in process of development. Though a number of investigators were active in gas-turbine research previous to and just after 1900 and though their work constituted a necessary foundation for later development, no practical power plants were produced. Charles Lemale and Rene Armengaud in France, Norman Davy in England, and Dr. Sanford A. Moss

(Continued on Page 52)

Full-time, off-the-job GRADUATE ENGINEERING TRAINING

STUDY CENTER. New York's Coliseum Tower houses one of three special study centers set aside for W.E.'s Graduate Engineering Training Program. Other centers are in Chicago and

Winston-Salem, N. C. Product design principles are one of the hereing technical subjects our engineers cover in Introduction to West Electric Engineering, the first phase of the program.

helps speed careers at Western Electric

Right now, Western Electric engineers are back "on campus" in a unique new Graduate Engineering Training Program. They're attending courses at special study centers established by the company in Chicago, New York and Winston-Salem, N. C. It's a rare chance to study advanced engineering and get ful pay at the same time.

These "students" are guided by a teaching staff of top Westen Electric engineers, outside experts and professors from leading universities. They're learning the latest technical developments . . . boning up on everything from manufacturing processes to computer applications.

When the program reaches its peak, some 2,000 to 3,000 Westen Electric engineers will attend each year ... studying in an atmosphere as close to a university graduate school as is practical for industry.

This engineering "university" was born because of the everincreasing complexity of Western Electric's job as the manufacturing and supply unit of the Bell Telephone System. Today W. E. engineers are right in the middle of exciting fields like microwave radio relay, electronic switching and automation. Graduate engineering training is designed to spur their development and advancement throughout their entire careers.

How Graduate Engineering Training would work for you

The program gets under way after approximately six months on-the-job experience. First off:

I. A nine-week Introduction to Western Electric Engineering helps you learn about your W.E. engineering field, sharpens your skills in getting ideas across. Technical subjects include communications systems, prodnet design principles, military electronic systems.

2. Another nine-week program, General Development, starts after your first year with us, helps broaden and strengthen your engineering background. Besides technical subjects like engineering statistics, measurements and instrumentation, and electronics, you receive grounding in human relations and the socio-economic importance of engineering.

3. To meet continuing needs for formalized technical training, Advanced Development offers four-week courses tailored to the individual needs of the engineers selected to attend. These courses are designed to help develop creative engineering abilities. Computer applications, switching theory, feedback control systems, and semi-conductor devices and circuits are sample topics covered in this phase.

Besides taking part in the Graduate Engineering Training Program, engineers are eligible for our Tuition Refund Plan for after hours study at nearby colleges.

In short, there's a unique opportunity at Western Electric to develop a professional career ... and work in the exciting world of communications.

MANUFACTURING AND SUPPLY

Knowledge born in the classroom often sparks on-thejob ideas. These engineers are working on transistor manufacturing problems.

OPPORTUNITIES FOR ENGINEERING GRADUATES

(Supervisory and administrative opportunities exist in each field)

Analysis for manufacturing operations:

Machine and tool requirements-M.E., E.E.; Space requirements-M.E., I.E.; Test facility requirements-E.E.; Personnel requirements-I.E.; Electric power, light and heat requirements-E.E.; Raw material requirements-Chem. E., Met. E., Phy. Sc.; Procedures and processes-M.E., I.E., Time and motion studies - I.E., Investigation of manufacturing difficulties-M.E.; Quality control-M.E., E.E.

Planning telephone central offices:

Equipment requirements - E.E.; Power and cable requirements-E.E.

Development and design:

New machines and tools-M.E., E.E.; Material handling methods-M.E., I.E.; New equipment and processes-M.E., E.E.; Repair shop methods-M.E.; Testing facilities-E.E.; Testing methods-E.E.; Job evaluation studies-I.E.; Wage incentive studies-I.E.; Production control studies-I.E.; Improved chemical processes-Chem. E., Met. E., Phy. Sc.; New application for metals and alloys-Chem. E., Met. E., Phy. Sc.; Raw material test procedures-Chem. E., Met. E., Phy. Sc.; Service to military on electronic devices-E.E.

For further information write: Engineering Personnel, Room 1030, 195 Broadway, New York 7, N. Y.

Western Electric has major manufacturing plants at Chicago and Decatur, III.; Kearny, N. J.; Baltimore, Md.; Indianapolis, Ind.; Allentown and Laureldale, Pa.; Burlington, Greensboro and Winston-Salem, N. C.; Buffalo, N. Y.; North Andover, Mass.; Lincoln and Omaha, Neb.; St. Paul and Duluth, Minn. Distribution Centers in 32 cities. Installation headquarters in 16 cities. General headquarters: 195 Broadway, New York, N. Y. Also Teletype Corp., Chicago 14, III.

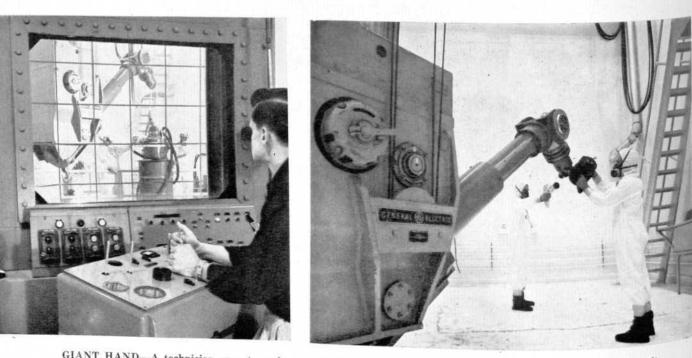
NEW DEVELOPMENTS

Edited by Norm Dill

Hold My Hand, But Not Too Tightly

Mechanical "hands" that can disassemble an **aircraft jet** engine "bolt by bolt" are part of the remote handling equipment in one of the world's largest shops for handling radio-active equipment.

The huge "hot" shop, 160 **feet** long, 50 feet wide and 63 feet high, is part of the Atomic Energy Commission's test facilities utilized by the General Electric Company.


Remote handling tools in the "shop" range from a 100-ton crane down through O'Man, a huge machanical "arm" to a much smaller master-slave manipulator for making intricate mechanical adjustments.

The O'Man manipulator can handle from 500 to 3,000 pounds, depending on the arm length and position used. This giant manipulator is suspended

from **a** crane bridge and can cover the entire working area of the shop.

Operators of these manipulators and four other electrically controlled wall-mounted manipulators are protected by concrete walls some seven feet thick and by nine windows of lead glass and zinc bromide, six feet thick. Each window contains 500 gallons of zinc bromide to protect operators from stray nuclear radiation.

Enough controls are located at each window to operate any piece of servicing equipment in the entire shop. Radio contact can be maintained by operators in the control galleries with other operating sites and with \mathbf{a} lead shielded locomotive used to haul equipment to be maintained in and **out** of the huge shop.

GIANT HAND—A technician operates a huge mechanical "hand" at AEC's aircraft nuclear propulsion test site, Idaho Falls, Ida. Designed and built by General Electric, the manipulator can handle from 500 to 3,000 pounds and can easily disassemble an aircraft jet engine, bolt by bolt. The shop is serviced by a track system which enters through large remote-controlled double doors at the west end. Smaller entrances are provided **for** personnel who must enter the "hot" shop.

On the floor of the shop are two large capacity turntables for rotating heavy equipment that must be serviced. Rotation of these nuclear aircraft propulsion equipment components provides easier access by tool and better view from any of the nine observation windows.

Connecting with the main "hot" shop are smaller shops for handling radioactive equipment, including one area for servicing O'Man and other remote handling equipment.

Also connecting with the "hot" shop by water canal is a water-filled storage pool for fuel elements and other radioactive units. The pool, 120 feet long, 60 across and 24 deep, is filled with water that is much purer than ordinary distilled water for sale in drug stores.

Visual observation of work in the "hot" shop is difficult because distances involved between observer and equipment often exceed 50 feet.

Six of the viewing windows in the main shop are 18 feet above the shop floor and two are 30 feet above it. One window is located in the cell for maintaining the remote handling equipment.

Viewing aids used include binoculars, spotting telescopes, mirrors and closed circuit industrial television, with preparation being made for installation of a television network that includes black and white, color, 3-D stereo vision or any combination of these, with viewing screens at all operator locations.

Depth perception depends to a great extent on the stereo vision of the technician, since size, color and shadows are not always available as depth perception aids.

One Step Beyond Push-Button Warfare

"This goes one step beyond push-button warfare, for at the Talos Defense Unit you don't even need to push a button to send this weapon into action."

That was the description of the first completely automatic system for firing and guiding missiles to their targets. The base, is an electronic control center which can go into action by itself in response to warning signals from remote outposts.

A decade ago, it would have seemed like a figment of science fiction to speak of a base that could fire a missile and guide it to its target without the help of a human hand. But here it is, before you, today.

The Talos Defense Unit (TDU) is composed of three structures—one a long, low concrete and steel building (316 x 80 feet horizontally, 30 feet tall) containing the control center, and the other two

circular magazines with the launchers, resembling anti-aircraft guns, in the center and numerous cells on the perimeter to house the missiles themselves. All three arc built to withstand (the pressures of the missile take-off and near misses From enemy bombs, and all are airliltered for protection of the equipment and personnel.

In general **terms**—and within **the bounds of** mill**tary** security-this is what the TDU is designed to do:

Suppose a fleet of **enemy bombers**, or perhaps a single missile, is detected by one of the numerous warning systems spanning the North **American** continent. A signal is sent to the **TDU**, where it is received by a series of data-handling and computing machines. These decode **the information** and **analyze** the number **of** attackers, their location, course and speed of approach.

Next a scheduling and programming computer sets the logical points of interception. Then it starts the machinery to load the missiles onto the launchers and fire them at the proper time and in the **proper** direction.

In this stage—still without the lifting of a human hand—the blast-proof concrete-and-steel cell doors swing open to release the missiles the computer has selected. The cells have reinforced concrete walls two feet thick and are so constructed that, should one of the missiles go off by mistake, the blast would go upward through the roof rather than horizontally to detonate the other missiles.

As a cell is opened, one of the launchers circles to face it and sends a small cart down a railed bridge to the door. Swiftly the missile is loaded on the cart and rolled onto the launcher. Then the launcher swings to the desired position of fire. After an automatic check-out—and at the proper time—the projectile is fired. All of this is done automatically.

There are two stages of flight after the initial upward thrust. First the missile follows a guidance beam to the vicinity of the target. Second, as the missile approaches the target, a secret "homing" device senses its presence and "locks on" to the target to close in for the kill.

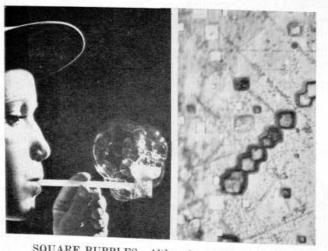
During all of this action, the military personnel at the TDU merely observe and monitor the performance of the equipment. However, several modes of operation that are less automatic and employ some human operators are possible. Both the equipment and the operators are maintained in a constant state of readiness by use of automatic practicing devices and system-checkout equipment. These employ tape, bearing data on a simulated engagement, which is played through the system.

One of the numerous advantages of the Talos unit is the fact it can fire single missiles or numerous missiles simultaneously at a number of different targets and can continue to fire over an extended period of time. Also, it can carry either a high-explosive or nuclear warhead.

(Continued on Next Pane)

The "Talos" missile is about 20 feet long, 30 inches in diameter and weighs 3,000 pounds. It is accelerated by a large solid fuel booster rocket some 10 feet long, which is jettisoned when the missile reaches cruising speed. At this time the main ramjet engine, using kerosene as fuel, ignites and provides thrust to keep the missile at constant speed throughout its Bight. The engine develops 40,000 horsepower.

Completion of the land-based unit now enables the Army to use the same weapon produced for the Navy, an important factor from an economy standpoint.


Square Bubbles

Square bubbles, the first such phenomena ever observed in nature have been found by a General Electric Company scientist during experiments at the Knolls Atomic Power Laboratory (KAPL).

Peter Senio, a metallurgist at the laboratory, disclosed that brilliantly colored microscopic bubbles in square and rectangular forms appear in lithium fluoride crystals after they have been irradiated with neutrons in a reactor, then heated above 600 degrees Centigrade (1,112 degrees Fahrenheit).

Square bubbles, Senio said, never have been in any other material. No bubbles of any kind were discovered by Senio in lithium fluoride that was not first irradiated with neutrons.

Lithium fluoride, he explained, is a clear, glasslike material he irradiates to study the effects of neutron bombardment and to associate the results with materials that make up a nuclear reactor.

SQUARE BUBBLES—Although round bubbles are produced by small boys and most of the time by nature, a General Electric metallurgist has reported square bubbles in nature.

Physical changes Senio is looking for appear in lithium fluoride within a few days rather than in months as is the case in many metals.

During his studies, Senio found that lithium bubbles appear first in bright colors. The colors, lie said, show that these bubbles have a third dimension, even though they are extremely thin, measuring only about three one-hundred-thousandths of an inch.

As the bubbles thicken, they turn white.

Senio said he believes formation of helium and tritium gases in the irradiated lithium is responsible for the bubbles. So far, however, he is at a loss to explain why square and rectangular bubbles appear rather than conventional spherical ones.

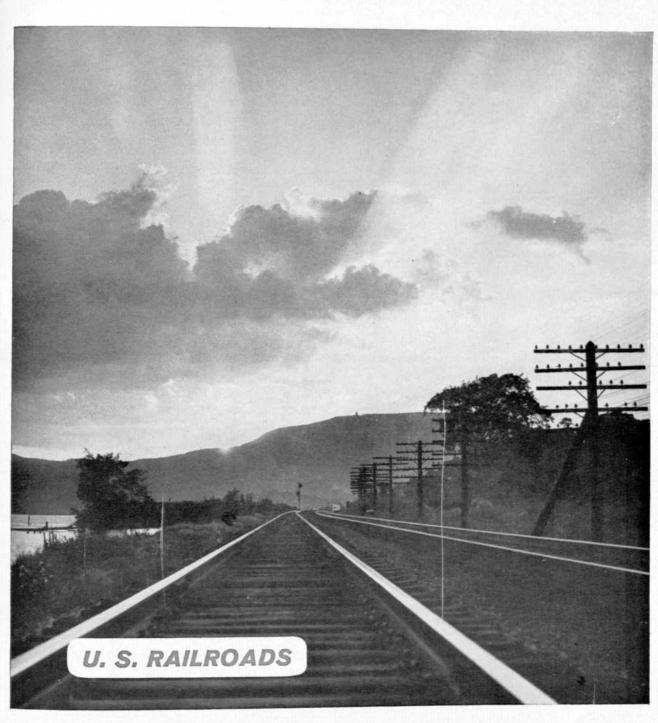
At first glance, he said, the box-like bubbles have no practical value, but should lead to important scientific findings regarding the fundamental atomic structure of matter.

"It will take a lot of study to explain why nature allows bubbles of this type to form in one material and not in others," he said.

These unique bubbles are formed this way:

Small pieces of clear lithium are irradiated with neutrons in a reactor. Once irradiated, they turn black.

Next, these crystals are heated in a laboratory furnace. When they reach about 450 degrees Centigrade (842 degrees Fahrenheit), they turn clear, or almost clear, again.


When heated to about 700 degrees Centigrade (1,292 degrees Fahrenheit) for several hours, they look frosty to the naked eye. At this stage they are taken from the furnace and allowed to cool. Studied under a microscope, the crystals reveal color squares formed inside and most frequently along natural faults in the lithium fluoride crystals. Over-all appearance of groups of the bright bubbles is somewhat similar to squares used in stain glass windows arranged in cubist design.

If the temperature of the furnace is boosted above 700 degrees Centigrade, the bubbles inside the crystals turn white and their corners begin to round.

As the melting point of lithium fluoride, 842 degrees Centigrade, (1,547 degrees Fahrenheit), is approached, the bubbles grow and combine to form new shapes that resemble sausages, donuts, boomerangs and many other familiar objects.

Ultimate form of the bubbles during heating near the **melting point of** the crystals, appears to be Spherical as would be **expected.**

(Continued on Page 46)

Where Engineers Can Move Ahead Faster

America's Railroads offer young engineers a particularly fast track to an interesting and challenging future. The reasons are clear. Our railroads are putting through an enormous program of automation and modernization. They are vital to America's economy and defense. And their need for you is very great. Their present management teams are looking forward to future successors. Retirement rates are currently high; and replacements are brought up from within. If you'd like to consider the unusual opportunities and rewards open to engineers of all types in railroading, see your placement officer or write us at 30 Church Street, New York 7, N. Y. We know you will like working with America's railroads. We've been doing it ourselves for many years—in supplying this great industry with Kerite quality insulated wire and cable.

NEW DEVELOPMENTS

(Continued from Page 44)

Elevator Furnace Equipped With Automatic Quenching Arrangement Transfers 4000 Pound Load In 7 Seconds

A problem in fast quenching heat-treated aluminum **has** been solved by an electric elevator furnace, equipped with an automatic elevator quench, which **transfers** the load from **furnace** to quench in just seven seconds.

The furnace has four zones, handles a 4,000 lb. charge at 1,000 degrees F maximum operating temperature. Temperature variation throughout the load is 10 degrees F or less after stabilization at control **temperature**.

Loads of coiled 24 S aluminum alloy sheet material as large as 6 ft. wide and 12 ft. long are regularly processed in the furnace. Remote recording thermocouples are used during performance testing. Within 15 minutes, most of the load is at temperature, and 20 minutes the inner-most part of the coils reaches the heat-treat temperature. Similar rapid heating is obtained on extrusion and formed parts loads.

A Neutron Flight Analyzer

Two engineers at the Knolls Atomic Power Laboratory here have developed a new electronic computing device for measuring, counting and classifying time of flight of neutrons from a nuclear reactor which accomplishes in an hour what it previously would have taken a man a month to do.

Elmer J. Wade and Donald S. Davidson of KAPL developed the first all-transistorized time of flight analyzer for use in determining the neutron energy distribution of various types of reactors. It contains 256 channels, compared to a device previously in use at KAPL which furnished only 11 channels for recording information on different energy range neutrons.

Employed in reactor development work at Kapl, the analyzer, through its work-saving features, has freed highly trained scientists from routine calculating work. They can now spend time saved in evaluating information the new analyzer provides for them.

Savings in time and labor by the new analyzer are matched by the space it conserves at the laboratory. The device is only 8 inches high, 19 inches long and 13 inches deep, compared to earlier analyzer equipment which took up at least 10 times that amount of space.

The KAPL engineers said the analyzer works this way:

Development of new reactors at KAPL involves mock-up of various fuel arrangements and accurate measurement of resulting neutron energy spectrum.

This is accomplished in a large part by measuring the time of flight of neutrons over a given distance and recording the number of these neutrons which fall into 256 different velocity ranges. Through various calculations, scientists can convert the velocity of these neutrons into corresponding energy ranges.

To accumulate this vital information, a neutron beam coming out of the thermal test reactor is chopped by a rotating shutter so that velocity can be measured. At the end of a flight path of established length, the neutrons are detected by a counter and the information relayed to the analyzer.

(Continued on Page 49)

HOUR VERSUS MONTH—This small General Electric all-transistorized analyzer rapidly measures, counts and classifies the time of flight of neutrons from an atomic reactor. It does in an hour what it previously took man a month to do.

the beginning of a million dollar detective story

Men, vehicles and instruments bound for the middle east

The cast of this story may include a part for you. GSI is a leader in the worldwide search for new petroleum reserves. **Emphasis** is shifting to foreign areas and there is a world of opportunity awaiting those who can qualify for a career in geophysical exploration.

GSI has openings for college graduates trained in geophysics, physics, engineering, math and geology.

For a rewarding career, which may take you from California to Calcutta, join the cast ... join GSI.

Write for our booklet, "With GSI The World Is Your Office."

+GSI... continuing leadership through research and growth

GEOPHYSICAL DERVICE INC. Department 12 - Box 35084 Airlawn Station, Dallas 35, Texas

The Chemical, Agricultural and Metallurgical Group of the Engineers' Wives held their first meeting on Tuesday evening, February 11. Professor John W. Donnell of the Chemical Engineering Department was the guest speaker. At the March meeting, Mrs. Beatrice Leonardson, Coordinator for Continuing Education in the College of Home Economics, will address the group. Tentative plans have been made for a tour in April and a joint meeting of husbands and wives is scheduled for May.

Engineers' Wives

A new **organization**, "Engineers' Wives," is being **Formed on the** M.S.U. campus. It is sponsored by the Engineering Department, and the purpose of this club is to acquaint the engineering student's wife with the field of engineering through lectures, movies, and discussions.

The first group meeting proved a success with 150 student wives in attendance. It was a business meeting held on January 21st in the Union Building. The faculty advisor is Miss Agnes McCann, assistant to the Dean of Engineering, and the assistant advisor is Mrs. J. D. Ryder, wife of the Dean of the School of Engineering.

Club officers are:

President—Marilyn Raymond Vice President—Zoe Hewitt Secretary—Carol Schuhardt Treasurer—Doris Brown The organization is divided into four individual groups:

Mechanical

Chairman—Sally Daly

Co-chairman—Kathleen Wenke

Civil

Chairman-Sharon Wiseman

Co-chairman-Carole Morgan

Electrical

Chairman-Marilyn Wilson

Co-chairman-Marilyn Archuletta

Met., Chem., and Agricultural

Chairman—Mary Bode Co-chairman—Connie Gyde

These groups function separately, and meet each month. Once each term, all four groups meet together for a business and social meeting. The next organization meeting will be held April 10, and Dr. C. U-Harris, Head, Department of Applied Mechanics, will give an introductory talk on engineering.

Row 1: Eunice Rice, Marilyn Raymond, Carole Morgan, Sharron Weseman, Judy Webster; Row 2: Sylvia Wensloff, Eleanor Raths, Nancy Robkins, Cathy Badelt, June Graham; Row 3: Bonnie Kershner, Marilyn Hooper, Marjorie Van Patten, Mrs. J. D. Ryder (asst. advisor), Esther Gordon.

NEW DEVELOPMENTS

(Continued from Page 46)

Information on each neutron counted is directed into one of 256 channels, each representing a velocity range. Up to 65,536 neutron counts is stored in each of these channels.

After the experiment this information is transmitted over cables to electronic calculating equipment which punches information from each channel of the analyzer onto a separate card.

This information is then fed into a digital computer for analysis of the data from the cards and the result is then automatically plotted on a graph which shows the reactor energy characteristics.

The entire operation from neutron count to production of a graph which reveals the energy spectra of the reactor requires only about an hour, compared to what would have been \mathbf{a} month's work for a single scientist recording data manually.

Signals Are Bounced From Meteor Trails

High-frequency radio signals, bounced from meteor trails 60 to 100 miles above the earth, have been used experimentally for the first time to transmit images of printed material over a distance of nearly 1,000 miles without relays.

The novel system was developed for the Cambridge Research Center of the Air Research and Development Command. Principals in the development were Warren H. Bliss, of the technical staff at RCA's David Sarnoff Research Center in Princeton, J. N., and R. J. Wagner, Jr., and G. B. Wickizer, of the RCA Laboratories radio research staff at Riverhead.

Basic research in the field of meteor trails has been conducted in this country notably at Stanford University and the Bureau of Standards, much of it sponsored by the Department of Defense, as well as in Canada and the United Kingdom. In recent years more attention has been given to the effects of meteor reflection on communications. The Canadian Research Board developed **a** teletype system.

Because radio reflections from meteor trails were believed to be of importance to the Air Force, **the** Propagation Laboratory of The Cambridge Research Center had initiated a meteor program in 1953. As a result of this **program**, Dr. Philip Newman and Dr. Joseph Casey of the Cambridge Center came to the conclusion **that** it should be possible to make radio transmission of visual material via meteor trails. RCA, at the request of the Air Force, developed special equipment to investigate this possibility. The first trial of this equipment during early autumn met with instant success. However, the meteor trail phenomenon is **a** complicated one and considerable further research will be required to determine how best to exploit this new capability.

Scientists gave tin's explanation of meteor trail propagation:

When a meteor enters the thin upper atmosphere of the earth, the high velocity of its passage causes the air particles to break down into positive and negativeions. Thistrail of ionized air, which may persist durin of a second up to several minutes alter the passage of the meteor, acts as a reflector of radio signals which would otherwise radiate out into space. Along a transmission path of the type used in the experimental facsimile system, ionized meteor trails appear on an average of several times a minute to close the circuit between transmitter and receiver.

The research team pointed out that meteor path propagation promises ultimately to increase the versatility of all radio communications by providing a means of sending information at times and over distances for which other means may not be available. It also offers a valuable means of supplementing the overcrowded radio spectrum.

According to the report of the three scientists, the experimental system functions this way:

The material to be transmitted is recorded on 35 millimeter film, which is scanned to **produce** a signal in a manner similar to the **techniques** used in television film transmission. The resulting signal is sent out from the transmitter through a highly directive **antenna** aimed in the direction of the distant receiver. At the receiver, the signal is picked up by another directive antenna each time it is reflected during the brief life of an ionized meteor trail, and the information is fed to a cathode-ray tube for display on a viewing screen. In the experimental system, photographic techniques are used to record the image as it appears on the screen.

The research team **reported** that the scanner and transmitter are run continuously, sending copies of a picture over and over at the rate of two complete scans each second. The receiver is also on continuously with the recording unit in a "standby condition."

"When a passing meteor closes the transmission path, the incoming signal trips the recorder ... to permit reproduction on the phosphor screen," they said. "The circuit then resets for the next burst."

The report stated that the experimental transmitter produces 20 kilowatts of power at a frequency of 40 megacycles, which is in the very-high-frequency range somewhat below the portion of the frequency spectrum used for commercial VHF television service. It added that the "encouraging results" so far have been achieved during preliminary tests of the new equipment prior to the start of a planned research program.

(Continued on Next Page)

49

New Electronic Panels That Store Images For Prolonged Viewing

Two novel electronic storage display pant-Is that can be used for prolonged viewing of projected light Images to which they are exposed for only fractions of a second, were described in Washington recently by scientists of the **Radio** Corporation of America.

The **experimental** devices, with potential applications in radar and other electronic display systems, were among several new developments disclosed by scientists and engineers at the third annual meeting of **the** Institute of **Radio** Engineers' Professional **Group** on Electron Devices on November 1. Among the others were new **techniques** which promise to lead to increased sensitivity and versatility in Vidicon **television camera** tubes.

The two **types** of **display** panels described by the specialists include one in which a new electronic **principle** is **employed** to achieve a light amplifier which, after a 1/100-second **exposure** to a dim image, stores and displays the image in bright form for several minutes or longer. The other type, employing **different principles** and a more complex structure, was described as a high-resolution storage system combining picture detail with long image persistence.

The first of the two devices was discussed by Dr. F. H. Nicoll, of the RCA Laboratories technical staff at the David Sarnoff Research Center, Princeton, N.J. In the new panel, according to Dr. Nicoll, the **bright** image display persists for several minutes following an exposure of only 1/100-second to the projected image. He added that the image may be erased in a fraction of a second, if **desired**, leaving the panel **immediately** ready for another exposure.

Dr. Nicoll told the- group that the ability of **the** panel to store a bright image after only a brief exposure results from the discovery of a previously unknown phenomenon in cadmium selenide, a photo-conductor material which is an insulator in darkness but becomes a conductor of electricity upon exposure to light. It was found, he said, that under the influence of applied voltage and exposure to light, the conductivity of the cadmium selenide will increase sharply and will remain high for long periods after the light source has been cut off.

The scientist gave the following explanation as to how the newly-discovered principle is applied in the- experimental amplifier:

The panel itself is a "sandwich" formed by a thin layer of cadmium selenide photoconductor on one side, and a layer of electroluminescent material on the other, separated by a thin layer of opaque material. The electroluminescent material has the char-50 acteristic of emitting light under the influence of an applied voltage. To operate the panel, a voltage is applied across the whole assembly. In darkness, the current is prevented from flowing by the insulating property of the cadmium selenide layer. When the light of the projected image strikes this layer even for as little as 1/1(X)-second, however, the cadmium selenide becomes conducting in accordance with the pattern of light, allowing current to pass through the opaque layer to the electroluminescent layer. The electroluminescent material thereupon emits its own light in the same pattern, reproducing the original image in bright form.

Since the cadmium selenide remains conducting for a long time after the light source has been cut off, the current keeps flowing to generate light in the electroluminescent layer. When the image is to be erased, the voltage is interrupted for a fraction of a second. The cadmium selenide then drops back to its insulating condition, ready for the next exposure.

Describing the laboratory device as a panel **three** inches square, Dr. Nicoll said that considerably larger storage panels of the same type can be made. He stated that future devices with these characteristics might be used in many applications to store for prolonged study images that appear only briefly, such as "stills" from television or motion picture sequences, or radar displays.

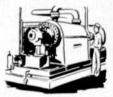
The other approach to direct-view picture **storage** in a panel device was described by an RCA Laboratories team including E. E. Loebner, H. O. Hook, and D. C. Darling. Developed in two different designs under a Signal Corps Contract, the device was characterized by the scientists as a high-resolution storage system for radar and other display applications in which long persistence and a high degree of detail are required.

As explained by the team, the panels comprise' arrangements of photoconductive and electroluminescent materials in tiny cells on a specially fabricated glass plate. They pointed out that the high resolution was achieved by employing large numbers of cells in a small area-1275 per square inch in one design, and about 1600 per square inch in another.

The scientists explained that the operation **depends** upon the basic principle of employing lightinduced conductivity in the photoconductor materia to permit the flow of current to the electroluminescen layer. In the new experimental panels, they said, the storage is achieved by an optical feedback process, with the light emitted by the electroluminescent material being used to maintain the conductivity of the photoconductor material. By this means, it was pointed out, storage is theoretically infinite, although in practice the laboratory devices have been limited to **storage** of about fifteen minutes.

YOUR LEADERSHIP CAREER with INGERSOLL-RAND

Intersoll Road,



also means LEADERSHIP in

I-R automatic assembly machine for automotive engine blocks. Proceeding from left to right, bearing halves, previously assembled for a machining operation, are automatically disassembled, bearing liners and crankshafts are inserted manually and bearing caps are automatically tightened to the correct torque.

Compressors and Blowers

Centrifugal Pumps

Steam Condensers

OPPORTUNITIES FOR ENGINEERS NOW AVAILABLE:

If you are interested in automation ...

can mean to you

AUTOMATION, today, is the magic word

saving economy in practically every industry.

Things that used to be done by hand are now

being done automatically. Here is a rapidly

growing field which offers fine opportunities

for you as a mechanically minded engineer.

arise in the design, development and experi-

mental work on such machinery, and creative

engineering is necessary to solve them. Prac-

tical engineering ability is also needed for

installation and initial operation of such

equipment. The early studies of customers'

needs and automation equipment sales are

designing and building these labor-saving air

and electric tools, and is also one of the

Ingersoll-Rand is a recognized leader in

also challenging jobs.

Many interesting engineering problems

that is opening new horizons for cost-

Here's what Air-Tool Engineering at Ingersoll-Rand

application.

outdoor man.

at Ingersoll-Rand.

Broadway, New York 4.

- Sales Engineering
- Design Engineering

• Production Engineering

country's leading manufacturers of air com-

pressors, pumps, rock drills, gas and diesel

engines, vacuum equipment. All of these

products depend heavily on advanced engi-

neering in their design, manufacture and field

Athens, Pa., where Ingersoll-Rand builds auto-

mation equipment. The picturesque Pennsyl-

vania hills provide many recreational advan-

tages that are particularly appealing to the

with long-range job security and excellent

opportunities for advancement, you'll find it

For further details, contact your Place-

ment Office, or write to Ingersoll-Rand, 11

If you are looking for a leadership career

Then there are the advantages of living in

Business Engineering

March, 1958

Diesel & Gas Engines

PRIME MOVER

(Continued from Page 39)

in the United States are representative of the workers in the field at that time. About the beginning of the century, Hans Holzwarth began a long career devoted **almost** exclusively to **the** constant-volume, or explosion, gas turbine. This type has met with far less **Favor** than the constant-pressure type, although the **compound** aircraft engine operates on essentially the same cycle¹.

In 1918 the Army accepted the first **turbosupercharger-a** device utilizing **a** small turbine rotor **to** increase **the normal** air intake of an internal combustion **engine**, **permitting** greater power and efficiency at high altitude.

Several different ground power plants were built or begun during the 1930's. Among them were two of Holzwarth's design, manufactured by Brown Boveri Limited, the first of which operated successfully for short periods as early as 19.33 and completed a nearly continuous run of 470 hours in September 1937. The August Thyssen Steel Works of Hamborn, Germany, then ordered a second unit of 5000-kw capacity, installed in 1940. Successful operation of the second unit, probably the first large industrial gas turbine in actual service, was reported but details aren't available.

Beginning about 1931, Brown Boveri developed a boiler, in reality a supercharged steam generator. In it, the hot products of combustion are forced around the water tubes at high pressure and high velocity to increase the rate of heat transmission. A gas turbine operated by the waste gases from the boiler furnishes the power for compression. Although not strictly an independent power plant, it provided a powerful stimulus to further development, especially of axial-flow compressors.

The Houdry cracking process for producing gasoline, in which a certain operation is carried out with gas at high pressure and temperature, furnished another stimulus, for the gas expanded in a turbine to deliver sufficient shaft power to drive an electric generator as well as the necessary compressor.

Among the other gas turbines of the 1930's was a constant-pressure unit of George Jendrassik's design built at Budapest, Hungary, in 1935, with assistance from the Hungarian government.

The Jendrassik unit, which included an axial-flow compressor and regenerator, developed about 100-hp net output at 16,400 rpm with a thermal efficiency of 21.2 percent. The Neuchatel unit of 4000-kw capacity uses no cooling water and requires as an auxiliary only a small diesel-driven alternator to supply **the** starting motor in the event of a complete power failure. (Its efficiency is reported to be about 17 percent since it has no regenerator.) In 1939, Brown Bover also began designing a gas-turbine locomotive that from 1942 onward operated successfully for long penods on nonelectrified railway lines of the Swiss Federal Railway.

A turbosupercharger is similar to an independent gas-turbine power plant except for the absence of a combustion chamber. Production techniques were well developed for the turbosupercharger. (Shortly thereafter several hundred thousand turbosuperchargers were built to make possible the high-altitude flying of Flying Fortresses, Super-fortresses, Liberators, Lightnings, and Thunderbolts in World War II.)

In September 1941, the Air Force asked General Electric to undertake development of the aircraft gas turbine in the United States and asked Bell Aircraft to design a suitable airplane. Within six months of the time work began, the first unit was completed. And the first jet engine flight in the United States occurred at Rogers Dry Lake (formerly Muroc), California, in October 1942.

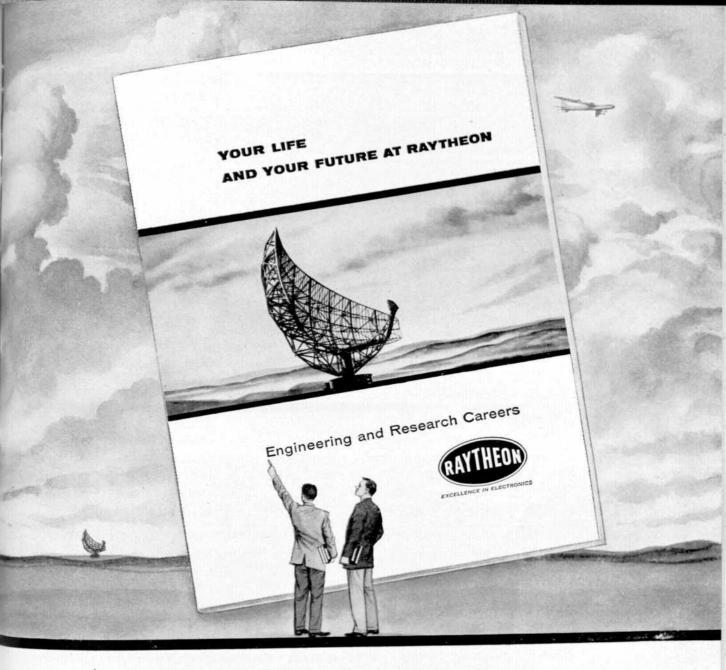
Yet the increase of scale involved in passing from turbosuperchargers to independent gas-turbine power plants necessitated not only new tools and other manufacturing facilities but also development of new metallurgical and manufacturing techniques. In general, operating stresses and gas temperatures required were no higher than for the turbosuperchargers. But obtaining the necessary strength in some of the parts with larger dimensions proved more difficult. It isn't surprising, therefore, that in the absence of an emergency the large financial outlays required weren't favored.

COLOR TV

(Continued from Page 25)

in color each night and hopes to expand that to two or more programs per evening during the rest of the 1957-58 season.

Advertisers are beginning to realize the capabilities of color-TV in selling their products. The medium's ability to present the product in all its natural color, as well as the impact that multi-colored images have on the viewer, arc prompting more and more national advertisers to appropriate funds for advertising in color-TV.


With an impending reduction in set costs, and more and more of the advertiser's dollar being spent incolorpresentation, it appears as if color-TV will find its way in the next decade.

"Mommy, why is it that Daddy doesn't have much hair?"

"Because he thinks a great deal dear."

"But Mommy, why is it that you have so much hair?"

"Finish your breakfast, dear."

This could be the most valuable reading you've ever done!

JUST PUBLISHED-YOURS FREE! An interesting, comprehensive, 16-page brochure that will answer your questions about how to use your training and talents to your best advantage in the job you select. The story is too big, too diverse and too detailed to tell here-that's why we ask you to let us send it to you.

Get this preview of a whole range of exceptionally promising futures for the price of a postage stamp. Find out how a fast-growing company encourages engineers and scientists to develop their potentialities to the fullest.

HIGHLIGHTS FROM THIS HELPFUL BOOK:

Raytheon's Record - review of pace-setting activities in electronics that widen horizons for you.

Research Program-suggestions for your future in either "pure" or applied research.

Development and Design Program -prospects for you in the practical application of research to the manufacture of new electronic products and components.

Manufacturing Techniques Program-latest production processes outlined for you who are inclined toward supervision and management positions. Application and Sales Program — advantages to you in world-wide field engineering activities; rewarding opportunities in electronic sales.

AND — important facts you want to know about individualized training, your advancement opportunities, chances for advanced study; company policies and benefits; plant locations; living and recreational prospects.

WILLIAM J. HOW WALTHAM 54, M	UFACTURING COMPANY Yells Jr., College relations dept. Assachusetts
Pease send me, v Your Future at R	without cost or obligation, Your Life and aytheon.
Name	

Now on many supertankers, ductile iron is a new material widely used by today's engineers in designing heavy-duty equipment.

Ductile Iron...another Inco Research first

Over five miles of ductile iron pipe going into many of today's supertankers

A deep sea tanker takes many a heavy beating when waves are rough.

With each pitch and roll, she has to weave. And her five or more miles of piping have to weave with her.

If it is ductile iron piping, every pipe length gives without break or leak. **Bends** without breaking

Ductile iron is not only ductile, but also tough. And resistant to the corrosive action of sea water and sulfur laden crude oil.

In some tankers, gray cast iron pipe resists corrosion for ten years or more. Sometimes, though, it's cracked and broken by the pounding of heavy seas that overtax its strength.

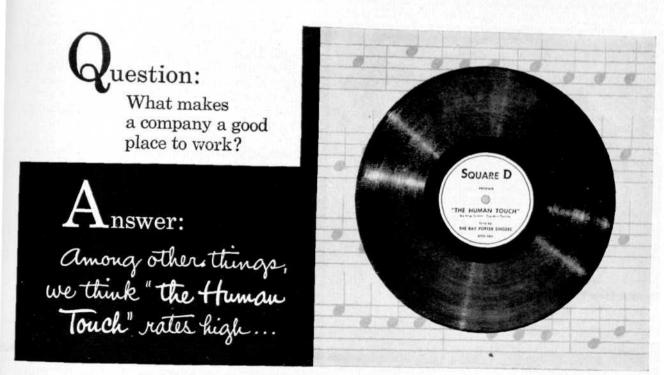
In other tankers, steel pipe outrides such storms without damage. But it corrodes so badly it may have to be replaced every three or four years when han-dling sour crudes.

Ductile iron pipe, tanker owners find, combines the low cost and demonstrated corrosion resistance of cast iron with the tough strength of carbon steel.

So today, many of the newest tankers carry pipe and fittings of ductile iron.

Ductile Iron also under city streets

The properties that prove ductile iron pipe suitable for tankers also commend it to municipal and utility engineers. So this shock-and-corrosion resisting pipe is used for water and gas mains. It may soon be under the streets in your town.


Ductile iron has many uses-from plowshares to jet plane parts. Ana cost-" conscious industry is constantly finding new ways to use this versatile moneysaving, Inco-developed material.

Forfreebooklet,"EngineeringProp-erties Irons," write: Dept. 232G, Educational Service, Development and Research Div.,

The International Nickel Company, Inc. New York 5, N.Y.

The International Nickel Company, Inc., is the U.S. affiliate of The International Nickel Company of Canada, Limited (Inc. C. Canada, Limited (Inco-Canada) - producer of Inco Nickel, Copper, Cobalt, Iron Ore, Tellurium, Selenium and Platinum, Palladium and Other Precious Metals

This record tells why-musically —We'd like to send you a plateter

There are a lot of things to consider in selecting the organization with which you will stake your future. For example, how is the company rated in its field? Is it known as a "quality" company? Is it growing? Is it aggressive? Is it big enough to offer you the opportunities you want? Is it too big—to the point where, of necessity, it deals with numbers instead of individuals?

...We think that last factor is mighty important. We call it the "human touch" element and it's pretty well explained, musically, in a theme song we had recorded for a recent national sales conference. The Ray Porter singers do some rather unusual vocalizing you'll probably enjoy. Clip the coupon and let us send you a record. It's good listening with a little food for thought thrown in.

mail this coupon for your	"YOUR ENGINEERING CA	oit 11, Michigan
"Human Touch" record	I am primarily inte	uch" record and a copy of Square D's brochure,
		ZONESTATE

PURITY

(Continued from Page 17)

purification of tungsten tor lamp filaments. General Electric has done considerable studying of so called perfect crystals or microscopic "whiskers" of metals. These were first discovered at the Bell Telephone Laboratories, growing on cadmium. Crystals of iron, grown at General Electric, are about one-tenth the diameter of a human hair. Under tests they show tremendous flexibility, indicating a tensile strength of almost a million pounds per square inch, close to the theoretical strength of iron and far beyond that of any known metal or alloy. The theory is that in such small dimensions crystal structure is continuous enough to approach the ultimate properties of the pure element.

A group of men at the University of Virginia under Allen T. Gwathmey have been growing huge single crystals of high purity metals to facilitate their study in another way. The crystals are about as thick as a pencil. These crystals are sectioned and machined into highly polished slices or spheres, so as to cut through or along one or more faces of the crystal. These crystals are actually a large scale exactly like those found in the tiny crystals of the regular metal. Various chemical experiments have been carried out on the prepared crystals and the rates of the reaction measured on each of the faces. A dozen metals have been studied in this way including copper, silver, nickel and iron. Corrosion varies from face to face as much as 5 times for copper. Friction and wear also varies for each face. Therefore we can say that the different crystal faces differ almost as much as one element to another.

Another small group at the University of Virginia under Jesse W. Beams has been whirling thin metal films to destruction in the ultracentrifuge and measuring the forces required. Again the results are startling. The thinner the metal film, the tougher and stronger it is.

All this seems to indicate that if we could get metals pure enough and orient their surface crystals in a desired pattern, we may unfold a whole new range of strengths and special properties. So far few of the new discoveries are explainable, much less practical, but the possibilities are wide. Union Carbide and Carbon Corporation have both been investigating nearly all of their metals in ultra-pure form. About four years ago they brought in two new closed-furnace processes for producing high-purity ferrochrome, an iron compound, and manganese to meet the increasingly tight specifications for jet-aircraft alloys.

The big problem comes when you try to produce pure metals in any great quantities. It is an entirely different proposition preparing pure metals commercially. The first step is to secure them in as pure a state as possible. These processes are usually a chemica process rather than the old metal-smelting techniques. The difficult part of high-purity metal **production** is the final stages of refining. The effort required to obtain the 99.9% pure is nothing compared to the labor required to remove the last 0.1%. Anything less than 0.05% of impurities is an industrial achievement. Actually in industry purity is not as important as the structural purity or the uniformity of the metal's constituents, for most industrial metals are alloys.

Vacuum methods of refining of one kind or another are the most universal tool of high-purity metals. Industry generally has been staying away from work in vacuums, mainly because of their strangeness, but also because of their added costs in production time. But dealing with metals where the presences of a small amount of oxygen can act as an impurity, a fairly high vacuum is a necessity. Besides this, other advantages have come into play.

Vacuum methods can be divided into two levels. One is embodied in the vacuum arc-furnace, in which a low-vacuum or inert-gas atmosphere is maintained while a larger carbon electrode supplies power and heat to the melting metals. This is the tool for primary titanium and zirconium, as well as for high-purity molybdenum, experimentally produced by the Climax Molybdenum Co. and under intensive development for advanced jet engines because of its high melting point. The other level of use is represented by the high-vacuum melting furnace, in which heat is supplied by induction coils around a center crucible and the vacuum maintained is around 100,000th, of an atmosphere.

Another example of the growth of vacuum melting is the Vacuum Metals Corporation, a 50 percent interest in which was recently acquired by the Crucible Steel Company of America, with plans for large expansion. Vacuum Metals, a small subsdiary of National Research, built part of its business on the vacuum melting of high-purity copper, iron and nickel. Vacuum Metals produces copper which is held to 0.0005^{*} or less of oxygen and nitrogen, 0.001% or less of sulfur and phosphorus and equally small amounts or 13 other trace impurities. Metals of such purities are used widely for electronic tubes.

These metals, however are nowhere near pure enough for the new electronic transistor devices, invented by Bell Telephone. In an endeavor to obtain such purity necessary for electronic transistors, Bel Laboratories have developed an entirely new process that raises the purity of industrial metals to a new frame of reference. Bell Laboratories have produced a pure form of germanium, used as the semi-conducting metal in transistors, to a degree of purity in which almost no impurities are detectable by present metods. Still other companies are developing new methods of preparing pure metals. Westinghouse has done considerable amount of work on levitating or float melting bits of metal, heated and suspended in a vacuum between electromagnetic induction coils prevent all contact with the furnace walls.

(Continued on Page 58)

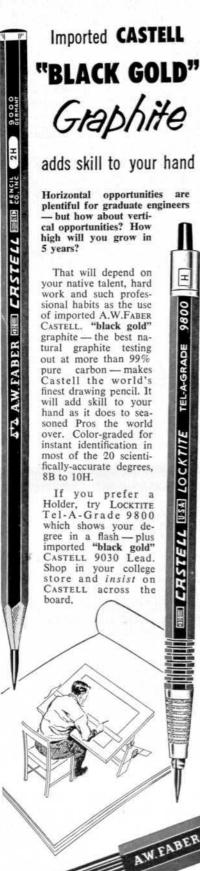
I'm in the business and I know...

"Not too long ago I was in the same situation youfellows are in now. Senior year and the hig decisions. What am I going to do with my education? What am 1 going to do for a living?

"Well, 1 talked to a number of -people and did as much letter writing and looking around as I could. The way 1 figured it, 1 wanted opportunity ...a fair chance to put my capabilities to work and to be recognized for what I could do. Of course, I wanted to be well paid, too. It all seemed to add up to the aircraft industry ... and to me it still does.

"In the space of just a few years I've worked on quite a few projects, important projects that some day may mean a great deal to this country. They sure meant a lot to me. And I wasn't standing still either. My salary and my responsibilities have increased with each promotion. That means lots of challenges, new and tough problems that we have to solve, but that's the way I like it. So, if you- want some advice from this "old grad," choose the aircraft industry. It's the wisest choice, I'm in the business, and I know."

probably no other industry in America has growrr so fast *and advanced so far* in a short time as has the aircraft industry. And yet there is no limit to how far man's inventiveness and imagination can push the boundaries. Radical new concepts that, would have been unthought of just a few years ago are the drawing-board problems of today.


Truly aviation is still in the pioneering stage, and one of the leaders is Northrop Aircraft, which has been making successful contributions to our nation's defense for over 18 years. Projects such as the Snark SM-62, world's first intercontinental guided missile, have identified Northrop as a successful pioneer. And new aircraft such as the supersonic, twin-jet T-38 advanced trainer are maintaining this reputation.

Let us tell you more about what Northrop can offer you. Write now, regardless of your class, to Manager of Engineering Industrial Relations, Northrop Division, Northrop Aircraft, Inc., 1034 East Broadway, Hawthorne, California.

NORTHROP A Division of Northrop Aircraft, Inc.

BUILDERS OF THE FIRST INTERCONTINENTAL GUIDED MISSILE

9800

FEL-A-GRADE

A.W. FABER - CASTELL PENCIL CO., INC. NEWARK 3, N. J.

PURITY

(Continued from Page 56)

The scientist is not yet satisfied with the purity of metals. This is only a beginning of what he will do. He will not rest until he has refined metals purer still. It may be that he will never achieve a really pure metal or if he does he may never know unless he can develop an instrument which can detect the smallest infinitesimal impurity. The National Bureau of Standards has been granted funds to work on this very problem of attaining pure metals. The striking fact about this whole problem is that when we do obtain ultra pure metals industry will not be able to use them anyway because they will be too soft for practical purposes. Nevertheless, the striving for purity in metals is already creating a whole new level of industry at the same time that it is expanding our basic knowledge of metals.

MIGHTY MIDGETS

(Continued from Page 21)

inch tubes lead away from each testing pit. The gases are purposely ignited at the end of the tubes. Fifty-foot tongues of flame sweep upward against the surrounding mountain, or flare high in the air, geysers flaming yellow against the sky.

Plenty of Action Before Test

A gas generator test is alive with action. One minute the pit is crowded with mechanics, test engineers, and instrumentation people. The next minute a siren wails and a warning voice is heard over the loudspeakers placed at a score of strategic points throughout the laboratory. "Warning. There will be a gas generator test firing in Pit Six in three minutes. All personnel clear the area."

There is a final check by the leadman, a last survey by the test engineer, then the gas generator, pierced with a score of instrument taps, is left alone while the crews retire to the safety of the control room adjoining the pit.

The recording engineer, the test engineer, two development engineers and the four members of the crew, along with an auxiliary fireman, crowd inside the long narrow room Hanked on one side by consoles, and on the other by high banks of recording instruments.

Looking out at Pit Six is an oblong porthole eighteen inches long, four inches wide. Viewed through the thick glass, the gas generator seems small to be the object of so much caution. The test' operator fingers a score of switches. Red lights flash on the console. Voices call readings from the recording instruments on the rear wall. There is a hissing of valves reacting to pressure.

START TODAY TO PLAN TOMORROW

By knowing about some of the projects underway at the Babcock & Wilcox Company, an engineer may see his personal avenues of growth and advancement. For today B&W stands poised at a new era of expansion and development.

Here's an indication of what's going on at B&W, with the consequent opportunities that are opening up for engineers. The Boiler Division is building the world's largest steam generator. The Tubular Products Division recently introduced extruded seamless titanium tubing, one result of its metallurgical research. The Refractories Division developed the first refractory concrete that will withstand temperatures up to 3200 F. The Atomic Energy Division is under contract by the AEC to design and build the propulsion unit of the world's first nuclearpowered cargo vessel.

These are but a few of the projects — not in the planning stage, but in the actual design and manufacturing phases — upon which B&W engineers are now engaged. The continuing, integrated growth of the company offers engineers an assured future of leadership.

How is the company doing right now? Let's look at one line from the Annual Stockholders' Report.

co	NSOLIDATED ST	ATEMENT OF INCOME
		ics Section) nds of dollars)
1954	1955	1956-UNFILLED ORDERS
\$129,464	\$213,456	(backlog) \$427,288

B&W engineers discuss developments in the Universal Pressure Boiler.

Ask your placement officer for a copy of "Opportunities with Babcock & Wilcox" when you arrange your interview with B&W representatives on your campus. Or write, The Babcock & Wilcox Company, Student Training Department, 161 East 42nd Street, New York 17, N. Y.

The men at the console call out a check sheet in much the same manner as a pilot and co-pilot in the cockpit of an airliner. Gaseous nitrogen pressure is checked, the recording functions, the manifold and purge pressures. The igniter link is given a speculative flick, and the after-burner is checked. If the slightest doubt is entertained, the test is delayed until the questionable condition is resolved.

Safety Behind Concrete Walls

The air of tension mounts, for the possibility of mischance in a tremendous power package, only **the** thickness of a concrete wall away, is always present. The test engineer bends before the recording instruments making last-second observations. The siren lifts once more. Dead silence in the control room. Then a solitary voice, "Igniter on! START!"

There is a thudding tumult as the gas generator comes to life. A fifty-foot tongue of yellow flame roars from the exhaust pipe, battering against the face of the mountain. On the wall a score of pens quiver over a score of recording charts. Seen through the window, the generator is a ruddy ball of pulsating metal. A finger presses a button. There is a stunning cessation of noise, a moment of echoing silence, then the all-clear siren is sounded. Someone pulls back a door, and the crew goes back to the test pit. The gas generator, immediately after firing, is still black with intense heat, the metal seeming almost to throb at the abrupt change in conditions. The various operations are conducted with great caution.

Gas generator and turbopump development is a continuous effort at Rocketdyne. What may be the very best gas generator or the most efficient turbopump in rocketry today, tomorrow may be inadequate. The scope of the various engine programs widens daily. More powerful components are always being sought. Every improvement in design, every modification, requires proof-testing. A minor change in one detail starts a sequence of changes in other details. Each one must be proved reliable, desirable.

The success of the missiles powered by Rocketdyne engines is due to a great many factors. Not the least is the reliability of the two mighty midgets, the unsung heroes hidden from the cameras, the turbopump and gas generator.

trying to catch the

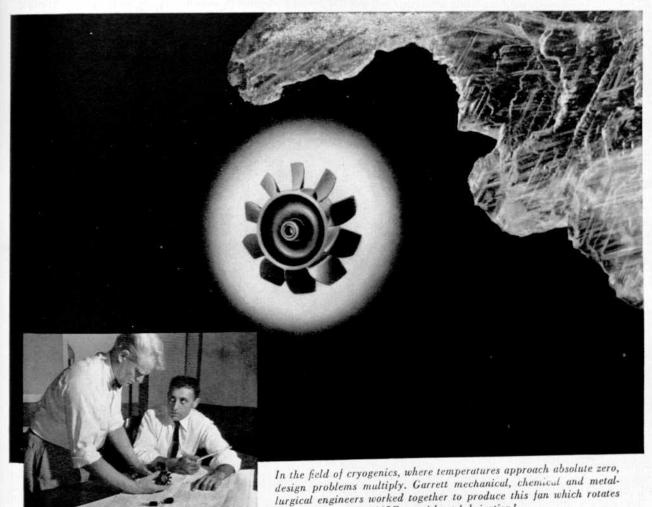
6

better forget it!

No engineering position worth getting can possibly offer you a "free ride".

The old rules still apply: a successful career depends on the amount of ability you have and on the capacity of a company to make good use of that ability.

Sikorsky helicopters have amply demonstrated our capacity for putting engineering talent to constructive use.


They are the most versatile, most widely used rotary-wing aircraft in the world today.

For factual and detailed information about careers with the world's pioneer helicopter manufacturer, write Mr. Richard L. Auten, Bridgeport Personnel Department.

BRIDGEPORT and STRATFORD, CONNECTICUT

Maximum results from a college education...

Education is the springboard for your future. Couple it with the proper engineering experience, such as you receive at Garrett, and you have the ingredients for a successful career in engineering fields which will be expanding for years.

At Carrett, specific opportunities in aircraft, missile and technological fields include: system electronics; computers and flight instruments; gas turbine engines and turbine motors; prime engine development; cryogenic and nuclear systems; pneumatic valves; servo control units and air motors; industrial turbochargers; air conditioning and pressurization and heat transfer.

at 10,000 rpm at -420°F ... without lubrication!

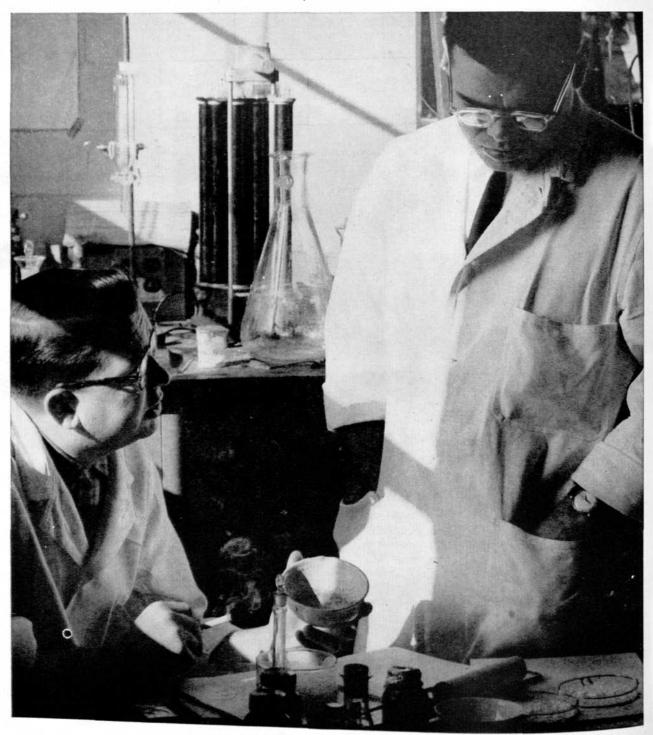
In addition to direct assignments, a 9-month orientation program is available to aid you in selecting your field of interest. This permits you to survey project, laboratory and administrative aspects of engineering at Garrett. With company financial assistance you can continue your education at outstanding universities located nearby.

Project work is conducted by small groups where the effort of each individual is more quickly recognized and where opportunities for learning and advancement are greatly enhanced. For complete information, write to Mr. G. D. Bradley.

9851 S. SEPULVEDA BLVD., LOS ANGELES 45, CALIFORNIA

DIVISIONS: AIRESEARCH MANUFACTURING. LOS ANGELES • AIRESEARCH MANUFACTURING. PHOENIX • AIRSUPPLY AIRESEARCH INDUSTRIAL • REX • AERO ENGINEERING • AIR CRUISERS • AIRESEARCH AVIATION SERVICE

GARRETIT CORPORATION


What careers are available at Allied Chemical?

Where would *you* fit into the Allied picture? Perhaps at one of our 12 research laboratories, more than 100 plants, or many sales offices throughout the country. What products would you work on? There are more than 3,000 in all—chemicals, plastics, fibers ... and new ones coming along every year.

At Allied, there are careens for chemists, chemistry

majors, engineers (chemical, mechanical, electrical). Facts about these careers are in a new book, "Allied Chemical and Your Future." Why not write for a copy? The Allied interviewer can also answer your questions. Your placement office can tell you when he will next visit your campus.

Allied Chemical, Dept. C-1,61 Broadway, New York 6, N.Y.

Pump-turbine design is now the work . . , hydraulics, the field . . . of John Jandovitz, BSME graduate of College of City of New York, '52.

Water conditioning chemical, service, and equipment specialist in Houston is **new** assignment of Arthur Brunn, BS Chem. E., University of Tennessee, '56.

Recent Training Course Graduates

select wide choice of careers at Allis-Chalmers

Field sales engineering of America's widest range cf industrial products is choice of Roy Goodwill, BSME, Michigan State College, '54.

Starting up a cement plant in Mexico after coordinating all work on it is latest job of John Gibson, BS Met. E., University of California, '54.

Nucleonics is chosen field of R. A. Hart-

field, BME, Rensselaer Polytechnic Institute,

53. Currently he is working on design and

development of new nuclear power plant.

THERE'S variety at Allis-Chalmers. Whether you're thinking in terms of types of industries, kinds of equipment, types of jobs, or fields of work, the diversification of Allis-Chalmers provides unsurpassed variety. For example:

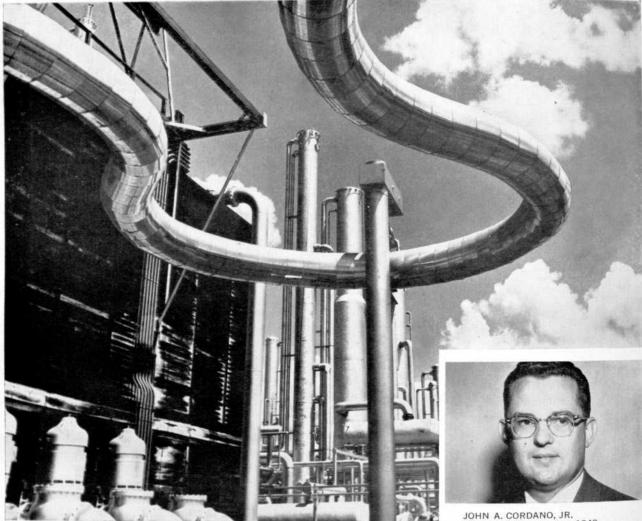
Types of jobs

Research Design Manufacturing Application Sales

Industries

Agriculture Cement Chemical Construction Electric Power Mining Nuclear Power Paper Petroleum

Equipment


Tractors Kilns Screens Earth Movers Transformers Crushers Reactors Control Pumps Motors Steam Turbines

Fields

Metallurgy Process Engineering Mechanical Design High Voltage Phenomenon Stress Analysis Nucleonics Electronics Hydraulics Acoustics Thermodynamics

An outstanding training program, started in 1904, is designed to help you find the activity within these groupings for which you are best suited. Up to two years of theoretical and practical training are offered. Direct employment at Allis-Chalmers is available for those with sufficient background. Learn more about Allis-Chalmers and its training program. Ask the A-C district office manager in your area or write Allis-Chalmers, Graduate Training Section, Milwaukee 1, Wisconsin.

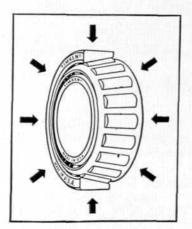
Join the GAS Industry ...the Nation's Sixth Largest

The Gas industry—the sixth largest in the nation—has a total investment of over 35 billion. Last year the industry set a new all-time record in number of customers, volume of Gas sold, and dollar revenue. In fact, Gas contributed 25% of the total energy needs of the nation as compared with 11.3% in 1940. The Gas industry is a major force in the growth development and economic health of this country.

There are many opportunities for you in the Gas industry. The industry needs engineers, and does not over-hire. You won't be regimented. There's always room for advancement. With utility companies and with manufacturers of Gas equipment, there's always a future for you as an engineer. Call your nearest Gas Utility. They'll be glad to talk with you about your opportunity in the Gas industry. *American Gas Association*.

JOHN A. CORDANO, JR. Mechanical Engineering, 1948 University of California

John Cordano started with the Southern Counties Gas Company as an assistant technician and moved up through the jobs of assistant engineer and distribution design engineer to his present post. As Office Engineer, Cordano has been responsible for the installation of a cost center program, a survey of practices and procedures in the construction and gas distribution field, and other special assignments throughout Southern Counties' 8 far-flung divisions.


STANLEY BLACHMAN B.S. in Electrical Engineering, 1946 Case Institute of Technology

When Stan Blachman left the service in 1947, he joined the A.G.A. laboratories as an appliance testing engineer. His college training, along with on-the-job experience with gas engineering design problems, enabled him to become an expert in the application of electrical components to gas equipment and to obtain a broad background in gas utilization. In 1956 he was assigned to handle special projects and engineering liaison between the Standards, Methods, and Testing Departments of the A.G.A. laboratories.

Tear out this page for YOUR BEARING NOTEBOOK

How to make a good grade with a scraper

Huge 518 hp. scrapers like this often have to maneuver giant loads on hills—up, down and sideways. Engineers who design these mammoth earth movers have to provide for the terrific, combination radial and thrust loads, plus shock loads. To take the loads and assure dependable scraper performance engineers mount wheels, pinions and differentials on Timken* tapered roller bearings.

Tapered design lets Timken[®] bearings take both radial and thrust loads

Not all bearings can take loads from the sides, as well as from above. The tapered design of Timken bearings lets them take *both* radial and thrust loads in any combination. And because Timken bearings roll the load on a full line of contact between their rollers and races, they have extra load-carrying capacity.

Want to learn more about job opportunities?

Timken bearings help make better machines. And better machines make our lives richer, give us more leisure time. We call it Betterness. Why not find out more about Betterness and how you can help create it. Write for: "BETTER-ness and Your Career at the Timken Company". The Timken Roller Bearing Company, Canton 6, Ohio.

NOT JUST A BALL 🔿 NOT JUST A ROLLER 💬 THE TIMKEN TAPERED ROLLER 💬 BEARING TAKES RADIAL 🏚 AND THRUST → - LOADS OR ANY COMBINATION -

INDEX TO ADVERTISERS

IB	Allison Division of General Motors Corp.
5x	A. W. Faber-Castell Pencil Co.
f>2	Allied Chemical & Dye
	Corp.
68	Allis-Chalmers Mfg. Co.
f>4	American Gas Association
li	The Asphalt Institute
59	Babcock & Wilcox Co.
66-67	(Chance Vought Aircraft
4	Convair-Fort Worth Divi- sion of General Dynamics Corp.
.!O	Douglas Aircraft Co., Inc.
1	Dow Chemical Co.
26-27	Eagle Pencil Co.
**	Eastman-Kodak Co.
11 E. 1	I. duPont de Nemours & Co.
fit The	Garrett Corporation
	(Airsearch Mfg. Co.)
47	Geophysical Service, Inc.
***	General Electric Co.
13	General Motors Corp.
88	Hamilton Standard Division
54	International Nickel Co.
51	Ingersoll-Rand Co.
10	International Business
	Machines
45	Kerite Cable
. ^r i7	Northrop Aircraft, Inc.
12 34-35	Pittsburgh Plate Glass Co. Pratt & Whitney Aircraft (Div. of United Aircraft)
9	Ryan Aero
53	Raytheon Mfg. Co.
14	The Rand Corp.
60 Siko	rsky Aircraft (Div. of
	United Aircraft)
8	Standard Oil Co. (Indiana)
2	Sylvania Electric Products
55	Square D Co.
65	Timken Roller Bearing Co.
	U. S. Steel Corp.
40-41 5	Western Electric Co. Westinghouse Electric Corp.

- * Inside front cover
- ** Inside back cover

*** Back cover

Why Vought Projects Bring Out The Best In An Engineer

At Vought, the engineer doesn't often forget past assignments. Like all big events, they leave vivid memories. And it's no wonder.

For here the engineer contributes to history-making projects — among them the record-breaking Crusader fighter; the Regulus II missile, chosen to arm our newest nuclear subs; and the new fast-developing 1,500-plusmph fighter, details of which are still classified.

The Vought engineer watches such weapons take shape. He supervises critical tests, and he introduces the weapons to the men with whom they will serve.

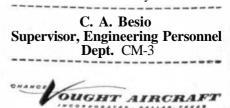
Engineers with many specialties share these experiences. Today, for example, Vought is at work on important projects involving:

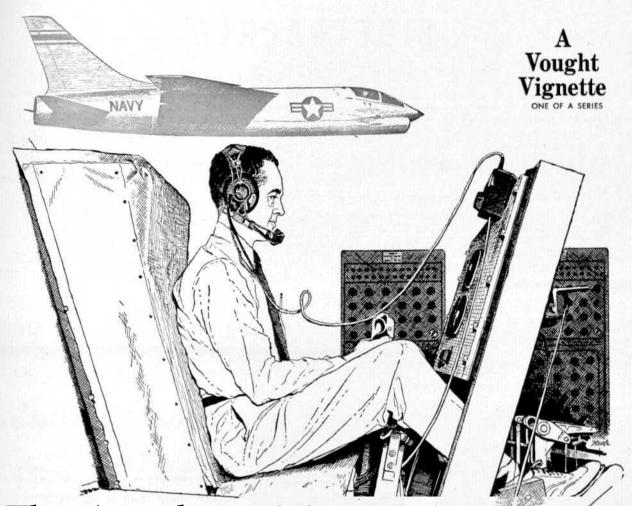
electronics design and manufacture

inertial navigation

investigation of advanced propulsion methods

Much 5 configurations


Vought's excellent R&D facilities help the engineer through unexplored areas. And by teaming up with other specialists against mutual challenges, the Vought engineer learns new fields while advancing in his own.


* * *

Would you like to know what men with *your* training are doing at Vought. .. what *you* can expect of a Vought career?

For full information, see our representative during his next campus visit.

Or write directly to:

The Aerodynamicist Who Test-Hopped Equations

There'd never been a fighter that could barrel at more than 1,000 mph one minute and land on a carrier the next. And, as a result, there was unusually keen advance interest in the flying qualities of the airplane proposed by Chance Vought.

Jim Madden was more than curious. As an aerodynamic design specialist, he would help develop the Crusader's handling qualities. His job began with wind tunnel tests.

Jim converted tunnel information into a graphic Picture of static and dynamic forces affecting Crusader stability. He used analog computers and equations of motion to predict the build-up of forces during maneuvers. Hinge moments, loads, and required rates of control motion were determined and released to Servomechanism and Product Design groups. Soon the Crusader's stabilization and power control packages began to take shape.

Jim's part in the project could have ended right there. But Vought's control system simulator helped him proceed to some thoroughgoing conclusions.

It duplicated the complete rod system and all servomechanisms that would control the speedy new fighter, fa the simulator's cockpit, high above the Structures Lab floor, Jim previewed control responses that test pilots later would experience. Airplane responses to Jim's rudder kicks and aileron movements were recorded on analog computers. Any inability of the control system to position the aircraft during flight was easier to spot . . . and, with test and design engineers on hand . . . easier to correct.

"It was like a big schematic — only better," says Jim of the simulator.

"It gave me a chance to work with the whole system.

"And actually watching aircraft responses to the controls gave me a feeling for how fast they happen."

Another thing that moved fast was Crusader development. Vought's simulator and other facilities detected problems before they compounded. The fighter reached operational readiness in record time.

> Research, design and test facilities at Chance Vought allow the engineer to do a thorough job in advanced problem areas ... assure high reliability in Voughtdeveloped weapon systems.

> > DUGHT AIRCRAF

SIDETRACKED

"Ah wins." "What you got?" "Three eights and a pair of kings." "No you don't, Ah wins." "What you got?" "Three sevens and a razor." "So you does. How come you **is** so lucky?"

A patient **of** an asylum who had been certified cured was saying good-by to the director of the institution.

"And what are you going to do when you go out into the world?" asked the director.

"Well," said the ex-nut, "I have passed my bar examinations, so I may try to work up a law practice. Again I had **quite** a bit of experience with dramatics in college, so I might try my hand at acting."

He paused and thought for a moment.

"Then on the other hand," he continued, "I may be a teakettle."

"Daddy, why can't I go out and play like the other kids?"

"Shut up and deal."

The young, inexperienced druggist was asked by a young lady for some cough medicine. Looking on the shelf, he could find none.

"Please — cough — cough — you've got to do something — cough — cough — for — cough, cough me."

So he gave her his own idea of a remedy. Soon the owner returned and asked how business was. He reported that he had just cured a woman's cough. "I gave her a malted with 4 oz. of mineral oil and 5 oz. of castor oil. **She** doesn't dare cough."

A **Boston** spinster was shocked at some language used by workmen repairing telephone wires near her home, so she wrote to the Telephone Company. The manager immediately asked the foreman on the job to make a report and here's what the foreman said:

"Me and Spike Williams were on the job. I was up the pole and accidently let the hot lead fall on Spike-and it went down his neck. Then Spike looked up at me and said, 'Really, Harry, you must be more careful."

1st guy: "You got a beer stein for Christmas?" 2nd guy: "No, for drinkin'."

A young man and date pulled over to the side of the road.

She: "You're not going to pull that 'out of gas' routine, are you?"

He: "Naw, I use the 'hereafter' routine."

She: "The 'hereafter' routine?"

He: "If you're not here after what I'm here after then you'll be here after I'm gone." 68 He was a small and undersized freshman at his first college dance, but despite his smallness and shyness he was sure of himself in his own way. He walked over to a beautiful and over-sophisticated girl and said, "Pardon me, Miss, but may I have this dance?"

She looked down at his small size and lack of fraternity pin and said, "I'm sorry, but I never dance with a child."

The freshman bowed deeply and said, "Oh, Im sorry; I didn't know your condition."

One day during a war, a tall, strong and handsome Roman soldier broke into a house where he found two luscious maidens and their matronly nurse.

Chuckling with glee, he roared, "Prepare thyselves for a conquest, my pretties."

The lovely girls fell to their knees and pleaded with him, "Do with us as thou wilt, O Roman, but spare our faithful old nurse."

"Shut thy mouth," snapped the nurse. "War is war."

Following is an excerpt from a letter **received** in this office some days ago:

Dear Sir:

In the coming months, you'll be reading many job recruiting ads. We thought that you might need some help in wading through this maze of placementology or jobalony. Here are a few between-the-lines **daf**fynitions to help you understand what these ads are all about:

TERM TRUE MEANING

Many opportunities-We need help.

Vlanagement potential—Know how to write your name so that no one can read it.

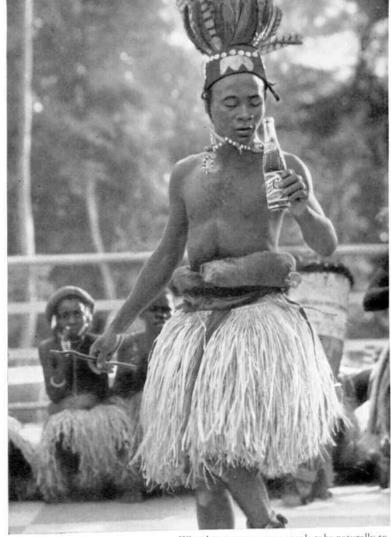
Work with top engineers—Sign up with a toy factory. Top-level position-A title in lieu of a raise.

Challenging problems—Now that we've made it, we don't know what to do with it.

Experience-What you ain't got enough of till you re too old to use it.

Responsible assignments-Work.

Nearby beaches-Particularly Utah and Nevada where you have thousands of miles of beach.


- Less than an hour from-By jet.
- Cultural and entertainment facilities-Movies and bars available.
- Job interest-Good looking secretary.
- Stimulating assignments-Office party.
- Stable company-We lived through the depression.
- Full quota of golfing, We're really running a country club; swimming, riding, etc.—manufacturing is just our hobby.

How to give a girl a surprise. Place your arms around waist. Draw her strongly toward you and hold her tight. Start to kiss her. When she says "stop' **re**lease her. Note amazement **on** her face. PHOTOGRAPHY AT WORK No. 30 in a Kodak Series

Pepsi-Cola International Panorama, a magazine of places and people, reaches people around the world, builds recognition for Pepsi-Cola as a product associated with the better, happier side of life,

Photography speaks in every language

This picture leaves no doubt that Netherlanders are neighborly.

To tell its story in 75 countries, Pepsi-Cola puts pictures to work to add meaning to the product's global billing as "the refreshment of friendship."

To build up an atmosphere of friendliness and understanding in markets around the world, Pepsi-Cola International publishes "Panorama"—and gives the brunt of the job to photography.

Photography knows no language barrier. It is clear to young and old alike—appeals to every-

What better way to say people take naturally to "Pepsi" whether in Leopoldville or Lichtenstein?

> one. With photography, people are real; situations authentic, convincing. This is what makes photography such a powerful salesman.

> Large businesses and small csn use this powerful salesmanship can also use photography to cut costs and save time in many other ways. It can help with problems of product design—can watch quality in production. It trains. It cuts office routine. You'll find that it can work for you, too.

> > Kodak

EASTMAN KODAK COMPANY, Rochester 4, N.Y.

CAREERS WITH KODAK

With photography and photographic processes becoming increasingly important in the business and industry of tomorrow, there are new and challenging opportunities at Kodak in research, engineering, electronics, design and production. If you are looking for such an interesting opportunity, write for information about careers with Kodak. Address: Business and Technical Personnel Dept., Eastman Kodak Company, Rochester 4, N. Y.

One of a series*

Interview with General Electric's W. Scott Hill Manager—Engineering Recruiting

Qualities I Look For When Recruiting Engineers

O. Mr. Hill, what can I do lo get the moil out of my job interviews?

A. You know, we have the same question. I would recommend that you have some information on what the company does and why you believe you have a contribution to make. Looking over company information in your placement office is helpful. Have in mind some of the things you would like to ask and try to anticipate questions that may refer to your specific interests.

Q. What information do you try to get during your interviews?

A. This is where we must fill in between the lines of the personnel forms. 1 try to find out why particular study programs have been followed, in order to learn basic motivations. I also try to find particular abilities in fields of science, or mathematics, or alternatively in the more practical courses, since these might not be apparent from personnel records. Throughout the interview we try to judge clarity of thinking since this also gives us some indication of ability and ultimate progress. One good way to judge a person, I find, is to ask myself: Would he be easy to work with and would I like to have him as my close associate?

Q. What part do first impressions play in your evaluation of people?

A. I think we all form a first impression when we meet anyone. Therefore, if a generally neat appearance is presented, I think it helps. It would indicate that you considered this important to yourself and had some pride in the way the interviewer might size you up.

Q. With only academic training as a background, how long will it be before I'll be handling responsible work?

A. Not long at all. If a man joins a training program, or is placed directly on an operating job, he gets assignments which let him work up to more responsible jobs. We are hiring people with definite consideration for their potential in either technical work or the management field, but their initial jobs will be important and responsible.

Q. How will the fact that I've had to work hard in my engineering studies, with no time for a lot of outside activities, affect my employment possibilities?

A. You're concerned, I'd guess, with all the talk of the quest for "wellrounded men." We do look for this characteristic, but being president of the student council isn't the only indication of this trait. Through talking with your professors, for example, we can determine who takes the active role in group projects and gets along well with other students in the class. This can be equally important in our judgment.

Q. How important are high scholastic grades in your decision to hire a man?

A. At G.E. we must have men who are technically competent. Your grades give us a pretty good indication of this and are also a measure of the way you have applied yourself. When we find someone whose grades are lower than might be expected from his other characteristics, we look into it to find out if there are circumstances which may have contributed.

Q. What consideration do you give work experience gained prior to graduation?

A. Often a man with summer work experience in his chosen academic

ELECTRIC

GENERAL

field has a much better idea of what he wants to do. This helps us decide where he would be most likely to succeed or where he should start his career. Many students have had to work hard during college or summers, to support themselves. These men obviously have a motivating desire to become engineers that we find highly desirable.

Q. Do you feel that a man must know exactly what he wants to do when he is being interviewed?

A. No, I don't. It is helpful if he has thought enough about his interests to be able to discuss some general directions he is considering. For example, he might know whether he wants product engineering work, or the marketing of technical products, or the engineering associated with manufacturing. On G-E training programs, rotating assignments are designed to help men find out more about their true interests before they make their final choice.

Q. How do military commitments affect your recruiting?

A. Many young men today have military commitments when they graduate. We feel it is to their advantage and ours to accept employment after graduation and then fulfill their obligations. We have a limited number of copies of a Department of Defense booklet describing, in detail, the many ways in which the latter can be done. Just write to Engineering Personnel, Bldg. 36, 5th Floor, General Electric Company, Schenectady 5, N. Y. 959-8

*LOOK FOR other interviews discussing: • Advancement in Large Companies • Salary • Personal Development.