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ABSTRACT

COMBINATORIAL AND FOURIER ANALYTIC L2 METHODS FOR
BUFFON’S NEEDLE PROBLEM

By

Matthew Robert Bond

Figure 1: One of Count Buffon’s beasts.

In recent years, progress has been made on Buffon’s needle problem, in which one considers

a subset of the plane and asks how likely “Buffon’s needle” - a long, straight needle with

independent, uniform distributions on its position and orientation - is to intersect said set.



The case in which the set is a small neighborhood of a one-dimensional unrectifiable Cantor-

like set has been considered in recent years, and progress has been made, motivated in part

by connections to analytic capacity [25].

Call the set E, the radius of the neighborhood ε, and the neighborhood Eε. Then

in some special cases [5][13][18], it has been confirmed that Buffon’s needle intersects Eε

with probability at most C| log ε|−p, for p > 0 small enough, C > 0 large enough. In the

special case of the so-called “four corner” Cantor set and Sierpinski’s gasket, the lower bound

C log | log ε|
| log ε| is known [3], replacing the previously-known lower bound C

| log ε| which is good

for more general one-dimensional self-similar sets.

In addition, the stronger lower bounds are still good if one “bends the needle” into the

shape of a long circular arc, or “Buffon’s noodle.” The radius one uses can be as small as

| log ε|ε0, for any ε0 > 0, with the constant C depending on ε0 [6]. It is unknown whether

this condition or anything like it is necessary.

Work continues on generalizing the upper bound results.



For Rachel and Erica, my favorite couple ever. They don’t have to read this document. They
do have to visit me in Vancouver sometime, though.
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Chapter 1

Definitions, notations, results, and

background

1.1 Buffon needle probability and Favard length

All sections of this thesis will have a great deal in common. In it, we will consider the Buffon

needle probability, or Favard length, of a measurable(1) set E ⊆ C. This quantity is

defined as

Fav(E) :=
1

π

∫ π

0
|projθ(E)|dθ, (1.1)

where projθ denotes orthogonal projection onto the line forming the angle θ with the positive

real axis, and |F | denotes the Lebesgue measure of F regarded a subset of R. Pointwise, one

defines projθ(reiθ
′
) := r · cos(θ′ − θ).

The reason this is sometimes also called Buffon needle probability: after a normalization

constant, it is the probability that “Buffon’s needle” will intersect E when thrown, where

1In fact, we will only consider compact sets
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“Buffon’s needle” is a straight line which lands with independent, uniformly distributed

location and angle with the positive real axis(2). Favard length is known to be related

to analytic capacity, a measure of how well E can “hide singularities of bounded analytic

functions” - see [19], [25]. The sets we study in this thesis are of interest both for the analytic

capacity problem and for Buffon’s needle problem.

1.2 Homogeneous Cantor-like sets

As we consider Buffon’s needle problem here, the sets which will play the role of E can

either be thought of as “partially constructed” self-similar sets, or small neighborhoods of a

self-similar set; they will be equivalent for our purposes, and we will freely conflate the two

without harm. In particular, the self-similar sets we study will be unrectifiable self-similar

sets of Hausdorff dimension one.

Definition 1. For s ≥ 0, we say that Hs(E) < ∞ if there is a constant M such that

for all ε > 0, E can be covered by countably many balls Bk of radii rk smaller than ε

such that
∑
k r
s
k ≤ M . The Hausdorff measure Hs(E) is defined to be the infimum

over all such possible values of M . The Hausdorff dimension, dim(E), is given by

dim(E) := inf{s : Hs(E) = 0} = sup{s : Hs(E) = ∞}. When 0 < H1(E) < ∞, a set

such that Fav(E) = 0 is called purely 1-unrectifiable, referred to in this thesis simply as

unrectifiable or 1-unrectifiable.

The opposite of an unrectifiable set is a rectifiable set (properly speaking, an m-

2In the 18th century, “Buffon’s needle” was a short, physical needle which was thrown
repeatedly at a grid of uniformly spaced lines. By counting the proportion of the time
the needle crossed a line, approximate values of π were found from a Monte Carlo type of
formula.
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G1

G2

Figure 1.1: G1 and G2, stages 1 and 2 of the construction of Sierpinski’s gasket.

3



Figure 1.2: K3, stage 3 of the construction of the square Cantor set.
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rectifiable set), such as an m-dimensional smooth manifold in Rn, where s = m ∈ N. Hm

agrees with the usual notions of length, area, volume, etc. for m = 1, 2, 3, etc. when E is a

smooth m-manifold. Therefore Hs generalizes such notions, as it is well known to be a Borel

measure on Rn, and s is allowed to be non-integer. For m ∈ N, an m-rectifiable set is any

countable union of Lipschitz images of Rm and Hm null sets. For equivalent definitions of

rectifiability, see [16]; this thesis is concerned with unrectifiable sets of Hausdorff dimension

1.

Because of work done by Besicovitch, it is known that 1-unrectifiable sets E ⊂ C are those

such that at least two orthogonal projections have zero Lebesgue measure, or equivalently,

every Lipschitz curve meets E in a set of zero H1-measure [16]. In fact, dim(E) = 1 is the

critical case for Buffon’s needle problem: if dim(E) > 1, Fav(E) > 0, and if dim(E) < 1,

Fav(E) = 0; hence the role played by H1(E) in the definition of rectifiability. In general, if

Hm(E) <∞, E decomposes into m-rectifiable and m-unrectifiable parts.

A standard example of a 1-unrectifiable set is K, the four-corner Cantor set. It is the

unique compact invariant set(3) of the function system Sk(z) = 1
4z + ck, where c1 = (0, 0),

c2 = (3/4, 0), c3 = (0, 3/4), c4 = (3/4, 3/4). Note also that

K =
⋂
n
Kn, where K0 = [0, 1]× [0, 1] and Kn+1 =

4⋃
k=1

Sk(Kn).

We can do this with other function systems, too. Consider also Sierpinski’s gasket, G, the

unique compact invariant set of the function system Sk(z) = 1
3z+ r

2πi(1
2+k3)

, k = −1, 0, 1.

The most general case we will consider here: Sk(z) = 1
Lz + zk, k = 1, ..., L. In such a

case, the unique compact invariant set is called J ; this case contains both cases above. If

3E is an invariant set if E =
⋃
k Sk(E); such a compact set exists and is unique [16].
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the centers zk are not all collinear, then J is unrectifiable. By the word homogeneous, it

is meant that instead of Sk(z) = 1
Lz + zk, one could have had Sk(z) = rkz + zk such that∑L

k=1 rk = 1, but in this thesis, we limit ourselves to the homogeneous case rk = 1
L .

Above Kn was defined as the union of all possible images of the convex hull of K under

n-fold compositions of the similarity maps Sk; define Gn and Jn analogously, or see the

following formal definition:

Definition 2. Let k = 1, 2, ..., L. Let Σn = {1, 2, ..., L}n. For any v = (v1, v2, ..., vn) ∈ Σn

and any k ∈ {1, 2, ..., L}, let (v, k) := (v1, v2, ..., vn, k) ∈ Σn+1. Let S(k) := Sk, and for

v ∈ Σn, let S(v,k) : C→ C be given by S(v,k) := Sk ◦ Sv. Let J0 be the convex hull of J .

Let Jv := Sv(J0), and let Jn :=
⋃

v∈Σn Jv.

For example, K0 = [0, 1] × [0, 1], and earlier we saw a picture of K3. G0 is a certain

closed triangle which is “filled in” rather than “empty.”

Remark 1. For our intents and purposes, we more or less identify Jn with an appropriate

neighborhood of J . Define Bε(E) := {z : dist(z, E) < ε}. Temporarily define J̃n to be

B
L−n(J ). Then c · Fav(J̃n) ≤ Fav(Jn) ≤ C · Fav(J̃n). The reason for this is simply the

fact that in either case, either of J̃n and Jn can be covered by several translations of the

other (4). As such, we will no longer bother to distinguish between the two. This is also the

reason why Buffon’s needle problem for sets like Jn is often phrased for simplicity, “How

likely is Buffon’s needle to land near J ?”[20] rather than “How likely is Buffon’s needle to

intersect Jn?” (See Figure 1.3)

Remark 2. K,G, and J were chosen for the notation as follows: K is K is for “Cantor”(5);

4the number of translates, and thus the constants c and C, depend on the eccentricity of

the convex hull of {zk}
L
k=1

5In [18], C has been used for the usual Cantor subset of [0, 1]
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Figure 1.3: Several translations of the triangles cover the discs, so the lengths of the orthog-
onal projections are comparable.
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G is G is for “Gasket”; since G is taken, J is J is for “General” – the phonics of the situation

don’t make it possible to reasonably misspell “gasket” as “jasket” or with any other first letter.

So it goes.

1.3 Results for Buffon’s needle problem

Let An . Bn mean that there exists a constant C such that An ≤ CBn, where C must not

depend on n.

Some known results:

Theorem 1. [3], 2008

Fav(Kn) & log n
n . The same proof also shows that Fav(Gn) & log n

n .

Theorem 2. [18], 2008

Fav(Kn) . 1
np

for any fixed 0 < p < 1
6 , where the implied constant may depend on p.

Theorem 3. [13], 2010

Let J be as above. Additionally, suppose J is a product set, and let the coordinates of

the zk be rational. Suppose also that there exists a direction θ0 such that |projθ0(J )| > 0.

Then Fav(Jn) . 1
np

, where p depends only on θ0.

This thesis contains a generalization of [18] and [13] to Gn. In addition, a weaker estimate

is proved for Jn. Current work between myself, Volberg, and  Laba continues toward proving

the power estimate for Jn (without one or more of the additional conditions in [13]). Volberg

and I have published work in this direction in [7], where the strong result was proved entirely

for Gn.

Theorem 14:

8



For some c > 0, Fav(Gn) . 1
nc

Theorem 13:

For some ε0 > 0 depending on only the zk defining J0, FavJn . e−ε0
√

log n

This thesis also contains a generalization of [3], not for more general sets, but for a

generalized notion of Favard length, called “Buffon noodle probability” or “circular Favard

length”. The results for this problem, which we will prove in Chpaters 2 and 3, are also

found in [6]. We refrain from stating the results here since they employ specialized notation

for describing the “noodle”.

1.4 Counting function

All results concerning Buffon’s needle problem for Jn employ the functions fn,θ : R → R,

called either the “counting function” or the “projection multiplicity function”. θ ∈ [0, π],

n ∈ N. Recall Definition 2 and Bε from Remark 1.

fn,θ :=
∑

v∈Σn

χprojθ(Jv) (1.2)

In light of Remark 1, there exists an alternate form of fn that is equivalent for our purposes.

Recall: Sk(z) = 1
Lz + zk. Then one simply redefines Jv := B

L−n(
∑n
k=1 L

−kzk); i.e., for

simplicity, one rescales a little and then approximates by discs. (See Figure 1.3)

We will not make use of the following fact, but it is interesting to notice the role of a

function like fn,θ in defining the integralgeometric measure of a set. Define gn,θ =∑
p∈E χprojθ(p); i.e., gn,θ counts the number of points in E “Buffon’s needle” intersects

if the “needle” goes through xeiθ and is perpendicular to the line reiθ, r ∈ R. Then

9



the integralgeometric measure I1
1(E) is given by I1

1(E) =
∫ π
0
∫
R gn,θ(x) dx dθ. With

proper normalization constant, I1
1 gives the length of any smooth curve E ⊂ C, just like

H1. However, H1 is positive on J (if the maps Sk satisfy the open set condition, [16]),

whereas I1
1 vanishes. Generalizations of Hs and I1

1 appear in [16] and others.

1.5 Heuristics and napkin sketches

In Chapters 2 and 3, we will prove a lower bound in Buffon’s noodle problem, for circular

arcs and more general “noodles,” respectively. In chapters 4 and 5, we will prove upper

bounds in Buffon’s needle problem. The lower bounds have a much simpler proof, remaining

relatively painless even in the presence of an additional complication, the “bend” in the

needle. The small bend in the needle is an unwelcome distraction for now, so forget it as

we briefly discuss heuristics; in Chapters 2 and 3, we’ll bend the needle as much as possible

without damaging our argument.

Note that ||fn,θ||1 = C for all n and θ; we can rescale and say C = 1. As n increases,

however, ||fn,θ||p is, in fact, an unbounded function for almost all θ for p > 1. This growth

occurs because the L1 mass concentrates on smaller sets as n increases; the effect is quite

dramatic for the case θ = 0 and Jn = Kn, and the squares stack up perfectly, the number of

squares in each stack being 2n. However, Kn also has tan(θ) = 1/2 as a clear counterexample

(see Figure 2.2), and for Gn, the (perhaps surprising) truth is that the exceptional θ such

that |projθ(G)| > 0 form a dense subset of [0, π][12], see also [14] (the “obvious” examples for

Gn are θ = 0, 2π/3, 4π/3). As such, the quantitative Buffon’s needle problem is inherently a

bit finnicky.

Micro-theorem: If |projθ(J )| = 0, then ||fn,θ||p →∞ as n→∞.

10



Proof: Since the Jn are compact and nested, |projθ(Jn)| → |projθ(J )| = 0. The result

follows from Holder’s inequality:

1 = ||fn,θ||1 ≤ ||χsupp(fn,θ)||q||fn,θ||p = |projθ(Jn)|1/q||fn,θ||p. (1.3)

�

If Jn had no self-similar structure, it would not be possible to state much in the way of

a converse to the micro-theorem(6). However, there is a converse.

Micro-theorem converse: If ||fN0,θ
||∞ > K for some N0, then |projθ(Jn)| < C

K for

some n large enough.

Sketch of proof: (See next figure) Fix θ. JN0
has a stack of K discs above θ. So say

that these K out of LN0 discs are green, and label also its descendents green. Consider

Jj·N0
. Each disc of JjN0

is replaced by a rescaled copy of JN0
when forming the set

J(j+1)N0
. In particular, each white disc gives birth to a stack of K discs we label green,

and LN0 −K white discs, and green discs give birth to only green discs. In this way, the

total proportion of white discs is

(
1 − K

LN0

)j
, and this proportion does not exceed the

measure of their unified projection. In particular, the union of projected white discs has

measure that approaches zero as j →∞.

On the other hand, the green discs do not unify to any more than C/K in the projection

at any stage n, either. This ultimately follows from the Hardy-Littlewood theorem: If we

sit at x, directly below a green disc at some stage JN0, then find the smallest j such that

6Suppose no self-similar structure were available, and suppose still that ||fn,θ|| = 1. One

can use the Chebyshev’s inequality to split to two level sets and show that 1 · |supp(fn,θ)|+
(K − 1)|{x : fn,θ ≥ K}| ≤ 1. The resulting bound on |supp(fn,θ)| is not that strong if the

height varies a lot. One could expand this to include many more level sets and try again,
but then the problem seems more difficult than the one we started with.

11



in generation jN0, this ancestor has turned green for the first time; taking an interval of

width 2 · L−jN0 centered at x, we obtain an average value of fjN0,θ
of size at least K/2.

As this interval contains all projections of all children, and the union of the children equals

the parent in L1 mass, this estimate on the average remains valid; that is, all green discs live

above places where Mfn,θ ≥ K/2. (M is the usual Hardy-Littlewood maximal operator)

Thus |union of projections of green discs| ≤ |{x :Mfn,θ(x) > K/2}| ≤ C
K ||fn,θ||1 ≤

C
K .

Buffon's needle

xappropriate Hardy-Littlewood interval

Figure 1.4: Discs turn green when the stack is tall for the first time; averages of fn,θ on the

illustrated interval will remain bounded below as n increases.

�

Note that if ||fn,θ||∞ → ∞, the above theorem implies that the measure of projθ(Jn)→

0 as n → ∞ by monotonicity. [18] uses a sharpened form of this micro-theorem converse.

The L∞ condition is replaced with an L2 condition, so that one finds many stacks of size K

at various different generations, rather than just one stack in a single generation. By doing

this, one can start out with a much larger proportion of green discs, leading to a much more

rapid exponential rate of conversion of discs from white to green. Go green, indeed.

12



In all cases, we will use p = 2. Note that the micro-theorem (lower bound) was easier; as

such, the bound it proves is easier to obtain. One needs only set the problem up with the

aid of just one additional insight, and the rest is counting. The insight is simply partitioning

the Favard length integral into well-chosen θ-intervals I1, I2, ..., Ilog n and integrating the

inequality |projθ(Jn)| ≥ ||fn,θ||
−2
2 in θ (this comes from (1.3)); a single integral with no θ

partitioning exactly leads to inferior estimate Fav(Kn) & 1
n .

The upper bound is more finnicky, relying on some somewhat delicate Fourier analysis.

The Fourier transform f̂n,θ is (away from ∞ equivalent to) a self-similar exponential poly-

nomial, and ultimately, it is the bad behavior of its zeroes when L > 4 that delays us from

proving more general results for now.
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Chapter 2

The lower bound in Buffon’s noodle

problem - circular noodle case

In this chapter, we will state and prove Theorems 4 and 5.

In [6], a related circular Favard length, or Buffon noodle probability, was studied.

To get circular Favard length Favσ instead of usual Favard length Fav, orthognal projection

along the line is replaced by projection along a circular arc tangent to the line. Specifically,

define the noodles

Fr(y) := r −
√
r2 − y2 (2.1)

Also define σ0(x, y) := (x − Fr(y), y), and σθ := R−θ ◦ σ0 ◦ Rθ, where Rθ is clockwise

rotation by the angle θ. (1)(Also Figure 2.1. σθ depends on r, but r will be stated in each

context and always refers to this implicit parameter wherever it appears.)

1Note that if we replace σ with the identity map, we are in the setting of [3]. We will
often appeal to the σ = Id case for intuition, while noting that the content of [6] is that the
arguments of [3] carry over into [6] when cεn

ε ≤ r < ∞ with the only difference being a
change in the universal constants.
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By definition, any g : R→ R is a noodle, but we will use this language only for functions

playing a role like that played by Fr in the definition of σθ.

iϴ

ρe

(ρ+r)e

iϴ

z

X

Y

σ
ϴ
(z) z'

σ
ϴ
(z')

Figure 2.1: And illustration of the action of σθ.

Finally, let

Favσ(Kn) :=
1

π

∫ π

0
|Projθ(σθ(Kn))| dθ

Remark 3. Note that Favσ(Kn) is the dρdθ measure of the set of centers of circles of

radius r that intersect Kn, where such centers are parameterized by z = (ρ + r)eiθ. In

addition to considering the dρ dθ measure of this set, we may also naturally be interested in

the (r + ρ) dρ dθ measure of this set - that is, its area. Indeed, since r is much larger than

the diameter of Kn, ρ+ r ≈ r. This is the key convenience that makes our estimate for the

circular noodle much easier and sharper by the arguments given here.

Specifically, if A ⊆ {z ∈ C : |z| ∈ (cr, Cr)} is measurable and |A| denotes its area, then
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|A| ≈ r
∫ 2π
0
∫
R χ{ρ′:(ρ′+r)eiθ∈A}(ρ)dρdθ. If we let A = {z : z + reiθ ∈ Kn for some θ ∈

R}, then this says, “The area of all points distance r away from Kn ≈ r·the noodle probability

of Kn.” Our main application, however, will be to a setting in which A is a set of circle

centers like in Figure 2.1 - that is, the circle centered at z ∈ A intersects two or more squares

of Kn.

We will modify fn,θ according to this problem. For any Cantor square Q ⊂ Kn, let

χQ,θ := χProjθ(σθ(Q)).

fn,θ,σ :=
∑

Cantor squares Q⊂Kn
χQ,θ.

projθ(σθ(Kn)) = supp(fn,θ,σ), which we will also call En,θ,σ.

Note that ∫
I
|En,θ,σ| ≥

(
∫
I
∫
R fn,θ,σdxdθ)

2

(
∫
I
∫
R f2

n,θ,σ
dxdθ)

. (2.2)

(This is (1.3) with a bend in the needle) The idea is to pick ≈ log n many disjoint

intervals Ij such that each such estimate gives

∫
Ij
|En,θ,σ| dθ ≥

C

n
. (2.3)

Summing over j = 1, 2, ..., Cε log n, the result will be

Theorem 4. For each c > 0, there exists C > 0 such that whenever r ≥ cnε, Favσ(Kn) &

Cε
log n
n . Further, we may interpret Fav(Kn) to be Favσ(Kn) in the case r =∞.

If r << nε, then we can still say something. We will prove the above theorem, but

the following generalized theorem is proved by carefully examining for which values of j the
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estimate (2.5) holds in this general case. The lower bound on r is enough to make sure for

Lemma 2.6 to holds.

Theorem 5. For all n ∈ N and for all r . n,

Favσ(Kn) &
log(r)

n

whenever 10 ≤ r ≤ n.

Good intervals Ij can be found near θ = arctan(1/2), because on this direction, Kn

orthogonally projects onto a single connected interval, and the projected squares intersect

only on their endpoints. These almost-disjoint projected intervals induce a 4-adic structure

on the interval. Let us rotate the axes and redefine the old arctan(1/2) direction to be our

new θ = 0 direction. (See figure)

.25
.5
.75

1
.25

.5

.75

1

x

y

Figure 2.2: The projection to the x-axis is the entire interval; the same interval is covered
by projθ(Kn) for all n by self-similarity.

Definition 3. Let Ij := [arctan(4−j−1), arctan(4−j)], 3 < j < Cε log n.
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1
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.25

1

.75
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.25

Figure 2.3: K2 in the adjusted coordinate system.

Then ICε log n will be the closest direction to 0, and it’s reasonable to think that on

average, each time j decreases by 1, Ij will grow by the factor 4, and for θ ∈ Ij , |En,θ,σ| will

decay no more than by a factor of 1/4, resulting in the persistence of (2.3). For individual

θ, this is reasoning is completely invalid, but in the “average” sense as formulated by the

integral dθ in (2.3), the reasoning is sound. (2.3) is, indeed, a theorem, which we will now

prove:

Proposition 6. For 3 < j < Cε log n,
∫
Ij
|En,θ,σ|d θ &

1
n .

Recall (2.2). Trivially, [
∫
Ij

∫
fn,θ,σdx dθ]

2 ≤ |Ij |2 · 1 ≤ C4−2j , while

f2
n,θ,σ =

∑
Q,Q′

χQ,θχQ′,θ =
∑
Q6=Q′

χQ,θχQ′,θ +
∑
Q

χ2
Q,θ .

Integrating over Ij ×R, the latter diagonal sum becomes C4−j . n4−2j (the inequality

uses j < ε log n < log n). When estimating the other integral, things become combinatorial
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- most of these terms are identically 0 in Ij × R. It remains only to show

Proposition 7. For 3 < j < Cε log n,

∫
Ij×R

∑
Q6=Q′

χQ,θχQ′,θd x d θ . n4−2j

Definition 4. Aj,k is the set of pairs P = (Q,Q′) of Cantor squares such that there exists

θ ∈ [0, π] such that the σθ images of the centers z = x + iy and z′ = x′ + iy′ of Q and Q′

have distance 4−k−1 ≤ |yσθ(z) − yσθ(z′)| ≤ 4−k and satisfy the condition on horizontal

spacing

4−j−1 ≤
∣∣∣∣xσθ(q) − xσθ(q′)
yσθ(q) − yσθ(q′)

∣∣∣∣ ≤ 4−j. (2.4)

We can think of 4−j as being tan(θ) for θ as in Figure 2.1. The terms in the sum of

Proposition 7 are supported on the integration region only when (Q,Q′) ∈ Aj−1,k, Aj,k, or

Aj+1,k.

In [3], it was proved2 that

|Aj,k| ≤ 42n−k−2j (2.5)

when r = ∞. The proof is very direct counting argument; roughly, if (Q,Q′) ∈ Aj,k, then

the most recent common ancestor of Q and Q′ must have been of generation k, and Q and

Q′ must have been as close as possible in the x direction for the next j generations. That is,

of the 4n bits of information needed to specify a pair P ∈ Aj,k, all but k + 2j + c of them

are free to vary, where c is an absolute constant.

2Actually, the bound and its proof on |Aj,k| are entirely two-sided, but we do not need

this fact.
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To get the same |Aj,k| estimate for nε . r < ∞ as shown in [6], it suffices to compare

the two cases with an application of the following lemma:

Lemma 8. Let ε > 0 be small enough. Let T : C→ C be such that Lip(T − Id) < ε. Then

∀z, w ∈ C,

|arg(z − w)− arg(T (z)− T (w))| < 2ε(mod 2π)

Proof. Write z − w = ρeiθ, and let α := arg(z − w)− arg(T (z)− T (w)).

arg(T (z)− T (w)) = arg((T − Id)(z)− (T − Id)(w) + (z − w)) = arg(λρeiβ + ρeiθ)

for some λ < ε, β ∈ [0, 2π]. So arg(T (z) − T (w)) = arg(λeiβ + eiθ) Then |α| ≤ α̂, where

tan(α̂) = ε
1−ε ⇒ |α| < 2ε.

This is where the condition r & nε is used: to make Lemma 8 sufficient for the purposes

of relation 2.4. Since σθ is just σ0 conjugated by an isometry, the Lipschitz constant for σθ

(restricted to Kn) is uniformly bounded by the size of the derivative of Frn on [−2, 2].

Definition 5. For any P = (Q,Q′) ∈ Aj,k, let

νP :=

∫ π

0

∫
R
χQ,θχQ′,θdxdθ.

We need the estimate

νP ≤ C4k−2n, (2.6)

since the integrand is supported only for angles belonging to Ij−1, Ij , and Ij+1. So we fix

j and sum over k to get
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∫
Ij×R

∑
Q6=Q′

χQ,θχQ′,θdθdx ≤

n−j+1∑
k=1

max{νP : P ∈ Aj′,k for some j′ = j − 1, j, j + 1}(|Aj−1,k|+ |Aj,k|+ |Aj+1,k|)

≤ Cn4−2j.

Here we used (2.5) and (2.6). The estimate (2.6) is elementary when r = ∞. It is true

more generally than that, though.

Lemma 9. νP lemma for circles

For any j, k pair P and r & nε, νP . Cε4
k−2n.

Proof. It may be useful to consult Figure 2.1 and Remark 3 now. If an arc of radius r

intersects two Cantor squares, then the arc must be centered inside the intersection of two

annuli whose radii are r±4−n, and whose centers are the centers of the two Cantor squares.

So we want to prove that the area A of this intersection of annuli satisfies A ≤ Cr4k−2n.

Without the loss of generality, the squares are centered on the x-axis at 0 and at rx0. We

have rx0 ≈ 4−k and we define η by rη = 4−n. So we need to show that A ≤ Cr2η2/x0. We

can scale the problem by r. Thus if we let r = 1, then we need only show that if x0 < 1/2,

then A ≤ Cη2/x0. It will not hurt to let the inner radius be 1 rather than 1 − η3. Let

R = 1 + η.

The area A is taken from the region bounded by y = y1 =
√

1− x2, y = y+
1 =√

R2 − x2, y = y2 =
√

1− (x− x0)2, and y = y+
2 =

√
R2 − (x− x0)2.

3One may divide the annulus along the circle with radius one. The inner annulus can be
rescaled to have inner radius 1, and the constants change negligibly
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Figure 2.4: Only where the annuli intersect will we find centers of circles of radius r which
intersect both Cantor squares. Approximation by a rectangle is sufficient to give the desired
estimate.

y+
1 = y2 at a point we will call x∗ = 1

2x0 + 1
2x0

η(2 + τ). So a rectangle which contains

the area A has width 2(x∗ −
x0
2 ) = 1

2x0
η(2 + η), and height y+

1 (
x0
2 )− y1(

x0
2 ). So we need

only show that y+
1 (

x0
2 )− y1(

x0
2 ) ≤ Cη. To do this, we use the Mean Value Theorem on the

function s(x) =
√
x.

y+
1 (

x0
2

)− y2(
x0
2

)) =

√
R2 − (

x0
2

)2 −
√

1− (
x0
2

)2

≤ s′(1− (
x0
2

)2)(2η + η2) ≤ C
η√

1− (
x0
2 )2

≤ C′η

Thus A ≤ Cη2/x0, as desired, so that νP ≤ 4k−2n.

This completes all proofs for this chapter. �
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Chapter 3

The lower bound in Buffon’s noodle

problem - general noodles

3.1 General Buffon noodle probabilities and some pre-

liminary reductions.

A notation for this chapter: Projθ(E)(x) := χprojθ(E)(x). Aside from mathematical gram-

mar and context, one can also tell what is referred to by proj and Proj by paying attention

to capitalization.

In the previous chapter, our noodles were the functions Frn , playing a certain role in the

expression σθ.

Let us define general noodle probabilities now. Because an arbitrary noodle does not have

as many symmetries as a circular arc, a general noodle probability will need to integrate over

three independent parameters: two real variables for where the noodle lands, and one for

the orientation of the noodle. This serves two purposes: first, it better conforms to our
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intuition about what it means to randomly toss a possibly asymmetric noodle. Second, an

extra variable of intergration allows us to more readily partition regions of integration into

ones possessing symmetry. Our parameterization will have three real variables, ρ and θ like

before, and a third parameter τ for translation orthogonal to the axis in the θ direction. In

the case where the noodle is a circular arc, the two-parameter definition is equivalent for

our purposes. It is clear that such a translation by τ of a circle is again a circle, and the

information about whether this circle intersects a set can be transformed into an equivalent

question in the two-parameter setting of the previous chapter. This is clearly not possible

for noodles with less symmetry.

Let gτ (y) := g(y − τ). (If we have a family gn of noodles, then we can write gn,τ (y) :=

(gn)τ (y) = gn(y − τ).) For a probability distribution P on R2 × S1, a set E ⊂ C, and

noodle g, we can define

Bug(E) =

∫
Projθσ

gτ
θ

(E)(x)dP (x, τ, θ).

We can choose an L > 10, say, and let P be normalized Lebesgue measure on (−2, 2) ×

(−L,L)× (0, 2π), under which

Bug(E) =
1

16πL

∫ 2π

0

∫ L

−L
|projθ(σ

gτ
θ

(E))|dτdθ =
1

16πL

∫ L

−L
Fav

σ
gτ
θ

(E)dτ .

(Note: proj was lower-case, so |proj(...)| denoted Lebesgue measure rather than pointwise

absolute value of a function.)

Having done this, we will say that a noodles gn are undercooked if Bugn(Kn) & log n
n .

We call such a family of noodles undercooked because they are sufficiently close to being
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straight lines. It is not clear whether the “undercooking” condition is necessary or an artifact

of the proof; on the other hand, it is clear that nearly-linear noodles are undercooked by

the definition specified for some appropriate notion of “nearly linear”. We will prove one

such result in this chapeter:

Theorem 10. If ||g′n(y)||4∞ · ||g′′n||∞ ≤ 4−n and ||g′n(y)|| ≤ 1
100n , then the noodles gn are

undercooked.

Remark 4. In particular, this theorem implies that the Frn are undercooked if rn ≥ 4n/5,

which is a much stronger condition than that required by Theorem 4. Another example is

gn(y) = 4−n/2 sin(4n/4y).

Remark 5. Using methods like those of Lemma 9 combined with the methods of this chapter,

it may be possible to weaken the first condition of Theorem 10 in favor of conditions that

require convexity and/or a condition on ||g′′′||∞. One would estimate noodle probability by

estimating the distortion caused by thinking of noodle segments as segments of circular arcs

rather than thinking of these segments as being “nearly linear”.

Theorem 4 of Chapter 2 could be stated as follows:

Theorem 11. The functions Frn, where Frn(y) := rn −
√
r2n − y2, define undercooked

noodles if rn & nε for some ε > 0.

The proof will be essentially the same, with the difference being that the corresponding

νP lemma will be more tortuous. Define

νP,σg =

∫ L

−L

∫ 2π

0
|projθ(σ

gτ
θ

(Q)) ∩ projθ(σ
gτ
θ

(Q′))|dθdτ . (3.1)
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Lemma 12.

νP,σg . 4k−2n.

There will be two main parts of the proof of the above νP lemma. If one of the two

squares, Q, were centered at the origin and τ were fixed, the computation would merely

amount to finding how often a needle close to the origin intersected the other square, Q′.

We claim that this assumption can be justified if one folliates the domain appropriately and

then changes variables. In fact, one can further assume that Q′ lies on the negative y− axis

and that τ = 0. Having done this, we will linearly approximate gn and use the structure of

the shear group(Section 3.2) to get our desired estimate. The idea is that we pick one of

the two squares Q and partition the integration domain accoding to which point along the

noodle punctures the center of Q. One can imagine dropping the noodle so it intersects Q,

gluing this point of intersection in place, and then rotating the noodle around this point,

asking how often the noodle hits the other square, Q′. Each of these positionings of the

noodle can be expressed uniquely by a triple (τ, θ, x). If a particular point on the needle

crosses the center of Q in a particular point along the noodle, then under this restriction,

one thinks of θ as free and of x and τ as functions of θ.

Let us state the formulas. Fix a j, k pair Q,Q′. We will describe the portion of the

domain of integration in which the noodle hits the center of a square Q at the same point

−τ0 of the noodle. That is, if Q has center z = ρeiθ0, consider g̃ := g − g(−τ0) and σ
g̃τ0
θ

.

For each θ, we need to find the unique xθ and τθ such that the line centered at xθe
iθ and

with positive axis in the θ + π/2 direction intersects z at y = τθ − τ0. In fact,

xθ = |z| cos(θ − θ0),
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and τθ = τ0 − |z| sin(θ − θ0).

Then when computing

∫ 2π

0

∫ xθ+a

xθ−a
Projθ(σ

g̃τθ
θ

(Q))(x)Projθ(σ
g̃τθ
θ

(Q′))(x)dxdθ,

Without the loss of generality z = 0. That is,

∫ 2π

0

∫ xθ+a

xθ−a
Projθ(σ

g̃τθ
θ

(Q))(x)Projθ(σ
g̃τθ
θ

(Q′))(x)dxdθ

=

∫ 2π

0

∫ a

−a
Projθ(σ

g̃
θ

(Q− z))(x)Projθ(σ
g̃
θ

(Q′ − z))(x)dxdθ.

For z = center of Q, and for fixed τ0, define

D = {τ = τ0 − |z| sin(θ − θ0), |x− |z| cos(θ − θ0)| ≤ C4−n, θ ∈ (0, 2π)}.

Then if

ID(τ0) :=

∫
D
Projθ(σ

g̃τθ
θ

(Q′))(x)dxdθ,

νP,σg ≤
∫L
−L ID(τ0)dτ0.

Putting this all together, we are seeking to prove that if in addition to the hypotheses

of Theorem 10, g(0) = 0 and Q′ is approximately at distance 4−k from the origin, then∫ 2π
0
∫ 4−n
−4−n Projθ(σ

g
θ

(Q′))(x)dxdθ ≤ C4k−2n. Here we use that the σ-projection of a

small square centered at the origin is essentially an interval around the origin regardless of
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θ.

3.2 Some useful facts about shear groups

A few facts about the shear groups Σθ := {σg
θ

: g : R→ R measurable} need to be stated

(the operation is composition of the maps σ
g
θ

). Below, g and h will be arbitrary noodles.

Recall:

σ
g
0(x, y) := (x− g(y), y),

σ
g
θ

:= R−θ ◦ σ
g
0 ◦Rθ.

First, there is this simple fact for arbitrary functions g and h:

σ
g
θ
◦ σhθ = σ

g+h
θ

(3.2)

Next, we show how shears by linear noodles behave. We can let Eθ be a family of subsets

of C, but for our application, we will fix Eθ = Kn. For g(y) = b, we get

projθ(σ
g
θ

(Eθ)) = projθ(Eθ)− b (3.3)

For g(y) = my, α := arctanm, we get

projθ(σ
g
θ

(Eθ)) =

(
projθ−α(Eθ)

cos(α)

)
=
√

1 +m2projθ−α(Eθ) (3.4)

Remember that the lower-case proj denotes a set, not a characteristic function. That is,

keep in mind that we defined Projθ(E) := χprojθ(E)
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For for g(y) = my + b and given x ∈ R, we can see that x ∈ projθ(σ
g
θ

(Eθ)) if and only

if x+b√
1+m2

∈ projθ−α(Eθ). Thus for any measurable A ⊂ R,

∫ 2π

0

∫
A
Projθ(σ

g
θ

(Eθ))(x)dxdθ =
√

1 +m2
∫ 2π

0

∫
1√

1+m2
(A+b)

Projθ(Eθ+α)(x)dxdθ

(3.5)

3.3 Proof of the νP Lemma for general noodles

Now to prove Lemma 12. Lemma 8 will be used several times without explicit mention.

Lipschitz constants are clearly gotten from Taylor estimates on g.

The rough idea of this proof: the set of parameters for which two squares are simul-

taneously punctured by the needle may be translated considerably in parameter space by

the shears, but it cannot be dilated by too much. Since a shear with small curvature

is well-approximated by a linear shear, the result will follow. Let λ′ = ||g′n(y)||∞ and

λ′′ = ||g′′n(y)||∞. Let Q and Q′ be centered at (0, 0) and (0,−L), respectively, where

L ≈ 4−m. Note that

ν
P,σ

g
θ
≤ C4−n|{θ : σ

g
θ
Q ∩ σg

θ
Q′}| ≤ C4−n(4k−n + λ′).

We need this quantity to be < C4k−2n. This task is already done if λ′ ≤ 4k−n, so assume

the opposite. Now for such θ we have |θ| < C(4k−n + λ′) < Cλ′.

For these θ, rotationRθ(Q) is in the band L−δ ≤ y ≤ L+δ, for δ = 4−n+L(1−cos(Cλ′)),

giving δ ≤ C max{4−n, Lλ′2}. Now transform the integral using the shear group. Let l(y)

linearly approximate g(y) at y = L − δ, with l(y) = my + b. Note that |b| ≤ CLλ′. Let
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ε(y) := g(y) − l(y) on [L − δ, L + δ] and extend ε continuously to be constant elsewhere.

Then, with b′ := b/
√

1 +m2:

νP,σg =

∫
|projθ(σ

g
θ

(Q′)) ∩ projθ(σ
g
θ

(Q))|dθ ≤
∫ 2π

0

∫ 4−n

−4−n
Projθ(σ

g
θ

(Q′))(x) dxdθ

=

∫ 2π

0

∫
[−4−n,4−n]

Projθ(σlθ(σεθ(Q′))) dxdθ ≤

C

∫ 2π

0

∫
[b′−2·4−n,b′+2·4−n]

Projθ−α(σεθ(Q′)) dxdθ .

Changing variable, we see that this is at most

C

∫ 2π

0

∫
[b′−2·4−n,b′+2·4−n]

Projθ(σεθ+α(Q′)) dxdθ .

Let Γ := {θ : projθ(σεθ+α(Q′)) ∩ [b′ − 2 · 4−n, b′ + 2 · 4−n] 6= ∅}, and let z := (0,−L).

If θ ∈ Γ, then projθ(σεθ+α(z)) ∈ [b′ − 3 · 4−n, b′ + 3 · 4−n].

Since |ε′(y)| < Cδλ′′, it follows that |ε(y)| < C δ2λ′′ < C L2λ′4λ′′ < C4−n. So

|σεθ+α(z)− z| < c 4−n, and hence |projθ(σεθ+α(z))− projθ(z)| ≤ C 4−n ∀θ ∈ Γ. So

Γ ⊆ {θ : projθ(z) ∈ [b′ − C4−n, b′ + C4−n]} = {θ : L sin θ ∈ [b′ − C4−n, b′ + C4−n]},

which implies:

|Γ| ≤ C|{θ : sin θ ∈ [b/L− C4k−n, b/L+ C4k−n]}|. (3.6)

Since b < CLλ′ and 4k−n ≤ λ′ ≤ C
n , sin θ ≈ θ, and we get |Γ| ≤ C4k−n, completing the

proof of the νP Lemma. �

Theorem 3.1 follows as well.
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Chapter 4

The upper bound in Buffon’s needle

problem - Sierpinski’s gasket

Here we will prove Theorem 14. The argument is elaborated in slightly more detail in [5].

It may be instructive to compare the general case Jn with the special case Gn we consider

here. When a theorem for Gn is treated as a special case to later be proved for Jn, the

correspondence will be noted by theorem number and then omitted, both to minimize repe-

tition and to prevent readers from missing the forest for the trees. The following preamble

serves equally well for the gasket and for the general case.

In Chapter 1, we saw that the growth of ||fn,θ||p → ∞ was equivalent to the decay

of |projθ(Jn)| → 0. We stated and proved a micro-theorem and its converse. Chapters

2 and 3 used the idea of the micro-theorem, and here we employ a stronger form of the

micro-theorem converse, Theorem 27.∫ π
0 |projθ(Jn)| d θ → 0, as guaranteed by the Besivotich theorem, is only an average -

we also noted that [12] and [14] show that the exceptional angles θ where |projθ(J )| > 0
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can be dense in [0, π]. The “set of bad angles at stage n”, En (or just E), necessarily has

small measure when n is large. Since E is small and |projθ(J
n2)| is small for θ ∈ Ec, the

integral can be split according to the cases θ ∈ E and θ ∈ Ec:

π · Fav(J
n2) =

∫
E
|projθ(J

n2)|d θ +

∫
Ec
|projθ(J

n2)|d θ

≤ |E|+ (π − |E|) · sup
θ∈Ec

|projθ(J
n2)| << 1

(The exponent 2 is chosen somewhat arbitrarily.)

Quntitative control over E has been accomplised to some extent:

Theorem 13. For all n ∈ N,

Fav(Jn) ≤ e−ε0
√

log n .

Theorem 14. There is a p0 > 0 such that for all p < p0, there exists Cp > 0 such that for

all n ∈ N,

Fav(Gn) ≤ Cpn
−p.

Further, one may take p0 = 1
[2 log3(169)]−1+1

≈ 1
10.262 , so p = 1

11 is sufficient.(1)

A method for controlling |E| originates with [18]. One takes the Fourier transform of

fn,θ in the length variable and takes a sample integral of |f̂n,θ(x)|2 over a chosen small

interval I where
∫
E×I |f̂n,θ(x)|2dθdx is small. One then shows that there is a θ ∈ E such

that
∫
I |f̂n,θ(x)|2dx is large relative to |E|, and so |E| must be small.

1It is not suspected that this value of p0 is sharp; on the other hand, p = 1 is impossible

because of the argument of [3], Fav(Gn) & log n
n .
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f̂n,θ is a decay factor times a finite self-similar product
∏
k ϕθ(L−ky) of trigonometric

polynomials ϕθ. The most direct methods don’t accomplish the estimate all at once; the

high-frequency terms form a product P1,θ such that
∫
I |P1,θ|

2dx is large, and the danger

is that perhaps the zeroes of the low-frequency terms P2,θ might be located such that∫
I |P1P2|2dx is small. In [18], the four frequencies of ϕθ were symmetric around 0, allowing

the terms to simplify to two cosines, and trigonometric identities allowed the whole product

to be estimated by a single sine term. In [13], an analogous role was played by tilings of

the line on the non-Fourier side by projθ0
(Jn) in the special direction θ0, and the product

structure of Jn allowed for a change and separation of variables. Separating variables is

more difficult when there is no product structure. The simplest case without the product

structure is the Sierpinski gasket G considered in this chapter. We give a sketch of the

power estimate (proven in detail in [5]), which is based on the fact that zeroes of ϕ(3k·) are

separated away from each other for different values of k. This special structure of zeros (we

call it “analytic tiling” after [13]) is not always available for all angles. We have not yet

found an adequate substitute for it in the general case, and this is why the for the general

case we still only have Fav(Jn) ≤ e−ε0
√

log n. Rather strangely, a claim in the spirit of

the Carleson Embedding Theorem, in the form of Lemma 40, plays an important part in

our reasoning in the general case of Chapter 5. Because the Fourier transform turns stacks

of discs (i.e., sums of overlapping characteristic functions) into clusters of frequencies, this

lemma provides important upper bounds when θ belongs to E.
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4.1 Reductions and main Fourier-analytic argument

B(z0, r) := {z ∈ C : |z − z0| < r}. For α ∈ {−1, 0, 1}n let

zα :=
n∑
k=1

(
1

3
)ke

iπ[12+2
3αk]

, Gn :=
⋃

α∈{−1,0,1}n
B(zα, 3

−n).

This set is our approximation of a Gn; recall Remark 1. We may still speak of the discs

B(zα, 3
−n) as “Sierpinski triangles.” The result for the Sierpinski gasket is the following:

Theorem 15. For some p > 0, Fav(Gn) . 1
np
.

We will simplify the proof by picking specific values for constants; at the end of this

paper, a short remark shows how to recover the full range p < p0 as in Theorem 14. As in

Chapter 1, let

fn,θ :=
∑

Discs D of Gn
χprojθ(D).

Self-similarity allows us to write fn,θ in a form well-suited to Fourier analysis:

fn,θ =
1

2
νn ∗ 3nχ

[−3−n,3−n]
,

where

νn := ∗nk=1ν̃k

ν̃k :=
1

3

[
δ
3−kcos(π/2−θ) + δ

3−kcos(−π/6−θ) + δ
3−kcos(7π/6−θ)

]

For K > 0, let AK := AK,n,θ := {x : fn,θ ≥ K}. Lθ,n := projθ(Jn) = A1,n,θ.
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For our result, some maximal versions of these are needed.(2):

f∗N,θ := max
n≤N

fn,θ, A
∗
K := A∗K,N,θ := {x : f∗N,θ ≥ K} =

N⋃
n=1

AK,n,θ.

Also, let E := EN := {θ : |A∗K | ≤ K−3} for K = Nε0, where ε0 > 0 is a small enough

absolute constant.(3)

Later, we will jump to the Fourier side, where the function

ϕθ(x) :=
1

3

[
e−i cos(π/2−θ) + e−i cos(−π/6−θ) + e−i cos(7π/6−θ)

]

plays the central role: ν̂n(x) =
∏n
k=1 ϕθ(3−kx).

Let Ln,θ := projθ(Gn). The following constitutes the content of Theorem 27: If

θ /∈ EN , then |L
NK3,θ

| ≤ C
K . (The same is true of Jn when everything is again defined

analogously)

Now Theorem 15 follows from the following:

Theorem 16. Let ε0 < 1/ log3(169), sufficiently, ε0 ≤ 1/9.262. Then for N >> 1, |E| <

N−ε0 = 1
K .

This is better than what has currently been done for Jn, Theorem 21. It turns out that

L2 theory on the Fourier side is of great use here. The following is later proved as Theorem

31 in Section 5.2.2: For all θ ∈ EN and for all n ≤ N , ||fn,θ||
2
2 . K. (The implied constant

depends only on the set of self-similarities)

2See the micro-theorem converse of 1.5 for the rough idea why this is useful, and then
Theorem 27 for the formal statement of what one can then say

3To get the sharpest exponent in Theorem 14, K−3 should be replaced by K−τ for τ > 2
arbitrary.
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One can then take small sample integrals on the Fourier side and look for lower bounds

as well. Let K = Nε0, and let m = 2ε0 log3N . Theorem 31 easily implies the existence of

Ẽ ⊂ E such that |Ẽ| > |E|/2 and number n, N/4 < n < N/2, such that for all θ ∈ Ẽ,

∫ 3n

3n−m

n∏
k=0

|ϕθ(3−kx)|2dx . Km

N
. Nε0−1 logN.

The number n does not depend on θ; n can be chosen to satisfy the estimate in the average

over θ ∈ E, and then one chooses Ẽ. Let I := [3n−m, 3n].

Now the main result amounts to this (with absolute constant α large enough):

Theorem 17.

∃θ ∈ Ẽ :

∫
I

n∏
k=0

|ϕθ(3−kx)|2dx & 3m−2·αm = N−2ε0(2α−1).

The result: logN & N1−ε0(4α−1) = Nδ, where δ > 0. Then it follows that N ≤ N∗.

Now we sketch the proof of Theorem 17. We split up the product into two parts: high and

low-frequency:

P1,θ(z) =
n−m−1∏
k=0

ϕθ(3−kz),

P2,θ(z) =
n∏

k=n−m
ϕθ(3−kz).

The following is Proposition 23:

Proposition 18. For all θ ∈ E,
∫
I |P1,θ|

2 dx ≥ C 3m .

Low frequency terms do not have as much regularity, so we must control the damage

caused by the set of small values, SSV (θ) := {x ∈ I : |P2(x)| ≤ 3−`}, ` = αm. In the
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next result we claim the existence of E ⊂ Ẽ, |E| > |Ẽ|/2 with the following property:

The next proposition is like Proposition 24, except that the following proposition holds

for a larger set SSV (θ) than the corresponding set SSV (t) defined there (t is a reparame-

terization of θ):

Proposition 19. ∫
Ẽ

∫
SSV (θ)

|P1,θ(x)|2dx dθ ≤ 32m−`/2

Therefore, ∃E ⊂ Ẽ such that:

∀θ ∈ E
∫
SSV (θ)

|P1,θ(x)|2dx . K 32m−`/2 .

Then Proposition 23 and 19 give Theorem 17; since ` = αm and K2 = 3m, we see that

any α > 2 may be used for this estimate; however, we will need α to be larger soon.

4.2 Controlling SSV (t)

Up until now, the proof has not differed from the general case other than some choices of

m, K, |E| etc., for reasons soon to be established. In this section, we depart dramatically

from the general case considered in Chapter 5. Remark 6, as we will see, is indispensible

for the proof we consider for the gasket and unavailable in the general case. In particular, a

large set of angles lacking properties like those in Remark 6 sometimes impies that SSV (t)

is large for a set of angles having size & L−
√
m, invalidating the approach we will use here,

or at the very least contributing another type of case we don’t yet know how to deal with.

The general case is handled by much less elementary methods in Section 5.3, which must

take into account the possibility of “repeated zeroes”.
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Remark 6. Consider Φ(x, y) = 1 + eix + eiy; note that ϕθ(z) = Φ(xθ(z), yθ(z)). To

understand the small values of Φ, the key observation is the fact that if Φ(x, y) = 0 and

x, y ∈ R, then Φ(3x, 3y) = 3, and further, that x = ±2π/3 mod 2π and y = ∓2π/3 mod 2π.

See also the Section 5.5.

These lead to the following estimates:

|Φ(x, y)|2 ≥ a(|4 cos2 x− 1|2 + |4 cos2 y − 1|2) (4.1)

sin 3x

sinx
= 4 cos2 x− 1 . (4.2)

Actually, we will set α = a−1 in the end. Changing variable we can replace 3ϕθ(x) by

φt(x) = Φ(x, tx).

Consider P2,t(x) :=
∏n
k=n−m

1
3φt(3

−kx), P1,t(x) :=
∏n−m
k=0

1
3φt(3

−kx).

We need control over the set SSV (t) := {x ∈ I : |P2,t(x)| ≤ 3−`}. One can easily

imagine SSV (t) if one considers Ω := {(x, y) ∈ [0, 2π]2 : |P(x, y)| := |
∏m
k=0 Φ(3kx, 3ky)| ≤

3m−`}. Moreover, (using that if x ∈ SSV (t) then 3−nx ≥ 3−m, and using xdxdt = dxdy)

we change variable in the next integral:

∫
Ẽ

∫
SSV (t)

|P1,t(x)|2 dxdt = 3−2n+2m · 3n
∫
Ẽ

∫
3−nSSV (t)

|
n∏

k=m

Φ(3kx, 3ktx)|2 dxdt

≤ 3−n+3m
∫

Ω
|
n∏

k=m

Φ(3kx, 3ky)|2 dxdy .

Now notice that by our key observations

Ω ⊂ {(x, y) ∈ [0, 2π]2 : | sin 3m+1x|2 + | sin 3m+1y|2 ≤ a−m32m−2` ≤ 3−`} . (4.3)
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The latter set Q is the union of 4 · 32m+2 squares Q of size 3−m−`/2 × 3−m−`/2. Fix

such a Q and estimate

∫
Q
|
n∏

k=m

Φ(3kx, 3ky)|2 dxdy ≤ 3`
∫
Q
|

n∏
k=m+`/2

Φ(3kx, 3ky)|2 dxdy

≤ 3` · (3−m−`/2)2
∫

[0,2π]2
|
n−m−`/2∏

k=0

Φ(3kx, 3ky)|2 dxdy

≤ 3` · (3−m−`/2)2 · 3n−m−`/2 = 3−2m · 3n−m−`/2 .

Therefore, taking into account the number of squares Q in Q and the previous estimates we

get

∫
E

∫
SSV (t)

|P1,t(x)|2 dxdt ≤ 32m−`/2 .

Proposition 19 is proved.

Remark 7. It is true that α depends on the constant a in (4.1), since it appears in (4.3).

One can use a = 1
18 , attained at (x, y) = (0, π). Then from (4.3), we get α = m/` ≥

log3(162) ≈ 4.631 as our last condition on α. We need this to compute the best exponent p.

Note that in our argument, we cut a couple corners. To get the best exponent currently

available, let γ > 1. Let m = γε0 log3N . Then the argument works as long as ε0 <

[2γα + 1 − γ]−1, i.e., ε0 <
1

2 log3(169)
. Using the sharper exponent β > 1 in Theorem 27,

one can get any p = 1

ε−1
0 +β

< 1
[2 log3(169)]−1+1

in the estimate Fav(Gn) ≤ Cpn
−p. In

particular, p = 1
10.262 is small enough.

This argument can be improved, but not so much that one should expect to get the sharp
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exponent without significant, totally new ideas.
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Chapter 5

The upper bound in Buffon’s needle

problem - general case

See the beginning of the previous chapter for a summary of the main ideas.

5.1 The Fourier-analytic part

5.1.1 The setup

The goal of this section is to prove Theorem 21, which shows that for most directions θ, a

considerable amount of stacking occurs orthogonal to θ. The constants c and C will vary

from line to line, but will be absolute constants not depending on anything except perhaps L

in some cases. The symbols c and C will typically denote constants that are sufficiently small

or large, respectively. Everywhere we use the definition B(z0, ε) := {z ∈ C : |z − z0| < ε}.
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Recall Remark 1, which allows us to say

J1 =
L⋃
j=1

B(rje
iθj ,

1

L
).

Also,

fn,θ :=
L∑

Discs D of Jn
χprojθ(D).

Observe that fn,θ = νn ∗ Lnχ[−L−n,L−n]
, where νn := ∗nk=1ν̃k and

ν̃k =
1

L

[ L∑
l=1

δ
L−krl cos(θ−θl)

]
.

We will now slightly modify f for convenience. Note that

f̂n,θ(x) = Lnχ̂
[−L−n,L−n]

(x) ·
n∏
k=1

φθ(L−kx),

where φθ(x) = 1
L
∑L
l=1 e

−irl cos(θl−θ)x. We are interested in L2 norms, so the argument

of φ is of no consequence. By factoring out the first term, discarding this factor, and changing

the variable, we may instead write in place of φθ the function

ϕt(x) =
1

L

[
1 + eix + eitx +

L∑
l=4

ealx+bltx
]
, t ∈ [0, 1] . (5.1)

We assumed here that r1 = 0, r2 = r3 = 1, θ2 = 0, θ3 = π/2. We can do this by affine

change of variable.
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For numbers K,N > 0, define the following(1):

f∗N (s) := f∗N,t sup
n≤N

fn,t(s) (5.2)

A∗K := A∗K,N,t := {s : f∗N (s) ≥ K} (5.3)

E := {t : |A∗K | ≤
1

K3
} . (5.4)

E is essentially the set of pathological t such that ||fn,t||L2(s)
is small for all n ≤ N , as

in [18]. In fact, we have this result, proved in Section 5.2.2:

Theorem 20. Let t ∈ E. Then

max
0≤n≤N

‖fn,t‖
2
L2(s)

≤ cK .

The aim of Section 5.1 is to prove the following:

Theorem 21. Let ε0 be a fixed small enough constant. Then for N >> 1, |E| < e−ε0
√

logN .

So let K ≈ eε0
√

logN , and suppose |E| > 1
K . We will show that N < N∗, for some

finite constant N∗ >> 1.

5.1.2 Initial reductions

Because of Theorem 20, we have ∀t ∈ E,

K ≥ ||fN,t||
2
L2(s)

≈ ||f̂N,t||
2
L2(x)

≥ C

∫ LN/2

1
|ν̂N (x)|2dx (5.5)

1Note that our result could be sharper if K3 were replaced by Kτ , τ > 2. The constant
ε0 could be computed explicitly, and it depends on τ . We will not do this, though.
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Let m ≈ (
ε0
2 logN)1/2. Split [1, LN/2] into N/2 pieces [Lk, Lk+1] and take a sample

integral of |ν̂N |
2 on a small block I := [Ln−m,Ln], with n ∈ [N/4, N/2] chosen so that

1

|E|

∫
E

∫ Ln

Ln−m
|ν̂N (x)|2dx dt ≤ CKm/N .

This choice is possible by (5.5). Define

Ẽ := {t ∈ E :

∫ Ln

Ln−m
|ν̂N (x)|2dx ≤ 2CKm/N} .

It then follows that |Ẽ| ≥ 1
2K .

Note that ν̂N (x) =
∏N
k=1 ϕ(L−kx) ≈

∏n
k=1 ϕ(L−kx) for x ∈ [Ln−m,Ln].

So for t ∈ E,

∫ Ln

Ln−m

n∏
k=1

|ϕt(L
−kx)|2dx ≤ CKm

N
≤ 2ε0N

ε0−1 logN.

Recall that m ≈ (
ε0
2 logN)1/2. Later, we will show that ∃t ∈ E and absolute constant α

such that

∫ Ln

Ln−m

n∏
k=1

|ϕt(L
−kx)|2dx ≥ cLm−2·αm2

≥ cN−αε0 . (5.6)

The result: 2ε0 logN ≥ N1−4αε0−ε0, i.e., N ≤ N∗ if ε0 is small enough. In other

words:

Proposition 22. Inequality (5.6) is sufficient to prove Theorem (21). Further, inequality

5.6 can be deduced from Propositions 23 and 24, as will be seen shortly.
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So let us prove inequality (5.6).

First, let us write
∏n
k=1 ϕt(L

−kx) = Pt(x) = P1,t(x)P2,t(y), where P2 is the low

frequency part, and P1 is has medium and high frequencies:

P1,t(x) :=
n−m∏
k=1

ϕt(L
−kx) = ν̂n−m(x)

P2,t(x) =
n∏

k=n−m
ϕt(L

−kx) = ν̂m(Lm−nx)

We want the following:

Proposition 23. Let t ∈ E be fixed. Then
∫Ln
Ln−m |P1,t(x)|2dx ≥ C Lm.

Recall that we defined the set Ẽ, |Ẽ| > |E|/2, and we assume that

|E| > 1/K . (5.7)

Recall that we denoted

I = [Ln−m,Ln] .

We also want a proportion of the contribution to the integral separated away from the

complex zeroes of P2,t:

Proposition 24. Let SSV (t) := {x ∈ I : |P2,t(x)| ≤ L−αm
2
}. Suppose also that E is

unable to hide, that is (5.7) is valid. Then there exists a subset E ⊂ Ẽ, |E| ≥ 1/4K, such

that for every θ ∈ E one has

∫
SSV (t)

|P1,t(x)|2dxdt ≤ 2c Lm ,

45



where 2c is less than the C from Proposition 23. In particular,

1

|Ẽ|

∫
Ẽ

∫
SSV (t)

|P1,t(x)|2dxdt ≤ c Lm,

Remark 8. The set SSV (t) is so named because it is the set of small values of P2 on

I. Combining this with Proposition 23,

∫ Ln

Ln−m
|P1,t(x)|2|P2,t(x)|2 dx ≥

∫
I\SSV (t)

|P1,t(x)|2 · L−αm
2
dx ≥ c Lm−2αm2

,

which gives (5.6)–exactly what we promised to obtain from Propositions 24, 23. Thus Propo-

sitions 23 and 24 suffice to prove Theorem 21, and Proposition 22 has been demonstrated.

Remark 9. We want to show that for N >> 1, (5.7) fails. After showing this, we will have:

|E| ≤ 1/K = L
−m2 = e−C(L)ε0(logN)1/2 , (5.8)

proving the main result, since the projections decay quickly enough on Ec.

First, let us fix t ∈ E and prove Proposition 23.

Proof. We are using first Salem’s trick on

∫ Ln

0
|P1(x)|2dx :

Let h(x) := (1− |x|)χ[−1,1](x), and note that ĥ(α) = C 1−cosα
α2 > 0. Then if we write
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P1 = Lm−n−1∑Ln−m
j=0 e

iαjx, we get

∫ Ln

0
|P1(x)|2dx ≥ 2

∫ Ln

−Ln
h(L−nx)|P1(x)|2dx

≥ C(Lm−n)2[Ln · Ln−m +
Ln−m∑

j 6=k;j,k=1

Lnĥ(Ln(αj − αk))] ≥ CLm.

To show that this is not concentrated on [0, Ln−m], we will use Theorem 20 and Lemma

40. We get

∫ Ln−m

0
|P1(x)|2dx =

∫ Ln−m

0
|ν̂n−m(x)|2dx = L2(m−n)

∫ Ln−m

0
|
n−m∑
j=0

e
iαjx|2dx

≤ CK ≤ CL
m
2 . (5.9)

So now we have Proposition 23. The greater challenge will be Proposition 24.

5.1.3 The proof of Proposition 24

Recall that SSV (t) := {x ∈ I = [Ln−m,Ln] : |P2,t(x)| ≤ L−αm
2
}.

To get Proposition 24, we will split P1,t into two parts, P
]
1,t(x) and P[1,t(x) corresponding

to medium and high frequencies.

A straightforward application of Lemma 40 to high frequency part P
]
1,t(x) will get us

part of the way there (see Proposition 26), and the claim 25 applied to medium frequency

term P[1,t(x) will further sharpen the final estimate to what we need. This latter refinement

will be a “for most t...” statement about P[1,t(x) that contributes a small amount to the
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possible size of E.

Naturally, P[1,t(x) and P
]
1,t(x) are defined as the medium and high frequency parts of

P1,t(x). Below, ` := αm:

P[1,t(x) :=
n−m−1∏
k=n−m−`

ϕt(L
−kx) = ν̂`−1(Lm+`−nx) ,

P
]
1,t(x) :=

n−m−`−1∏
k=1

ϕt(L
−kx) = ν̂n−m−`−1(x).

What follows is the first claim of this subsection. The idea is simply that |Φt| ≤ 1, with

equality only when the exponents all belong to 2πZ. As it is quite difficult for this to happen

simultaneously for even just two exponential terms, one gains a lot of information about the

decimal expansion of t whenever |Φt| is close to 1.

Proposition 25. For all sufficiently small positive numbers τ ≤ τ0 and for all sufficiently

large m and ` = αm there exists an exceptional set H of directions t such that

|H| ≤ L−`/2 , (5.10)

∀t /∈ H ∀x ∈ [Ln−m,Ln], |P[1,t(x)| ≤ e−τ ` . (5.11)

Proof. Notice that

φθ(r) = Φ(r cos θ, r sin θ) ,

where for x = (x1, x2),

Φ(x) := Φ(x1, x2) =
1

L

L∑
l=1

e2πi〈al,x〉 .
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As some pair of vectors al−a1, l ∈ [1, L] must span a two-dimensional space, we can assume

without the loss of generality (make an affine change of variable) that

a1 = (0, 0) , a2 = (1, 0) , a3 = (0, 1) .

Then

Φ(x1, x2) =
1

L
(1 + e2πix1 + e2πix2 +

L∑
l=4

e2πi〈al,x〉) . (5.12)

We make the change of variable y = (y1, y2) = L−(n−m)x. Let Rt denote the ray y2 = ty1.

Then we need to prove that there exists a small set H of t′s such that if y ∈ Rt ∩ {y : |y| ∈

[1, Lm]}, t /∈ H then

|Φ(y) · · · · · Φ(L`y)| ≤ e−τ` . (5.13)

We consider only the case t ∈ [0, 1], all our y’s will be such that 0 < y2 ≤ y1, and as

|y| ≥ 1 we have y1 ≥
1√
2

.

It is very difficult if at all possible for function Φ to satisfy |Φ(y)| = 1. In fact, looking

at (5.12) we can see that

|Φ(y)| ≤ 1− bdist(y,Z2) ≤ e−bdist(y,Z2) . (5.14)

Therefore, we are left to understand that there are few t’s such that

∃y ∈ Rt, : y1 ∈ [
1√
2
, Lm] : b ·

∑̀
k=0

dist(Lk y,Z2) ≤ τ ` . (5.15)

Now may be a good time to consult Figure 5.1.
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Figure 5.1: It is quite difficult for a large number of factors of P[1,t(x) to be close to 1

simultaneously. In particular, Lkx and Lktx must be close to Z for many values of k.
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Fix y ∈ Rt as above. If (5.15) holds then for 90 per cent of k′s one has

dist(Lk y,Z2) ≤ 10τ ` . (5.16)

Denote Zy := {k ∈ [0, `] : dist(Lk y,Z2) ≤ 10τ `}. We know that

|Zy| ≥ 0.9` .

Let us call scenario the collection s := {m1; k1, ..., k0.1`}, where m1 = 0, ..,m; 0 ≤ k1 <

... < k0.1`.

Every t such that there exists y such that (5.15) holds generates several scenarios accord-

ing to

y1 ∈ [Lm1−1, Lm1)

and according to what is the set [0, `] \ Zy—this is the set k1, ..., k0.1` of the scenario.

We will calculate the number of scenarios later. Now let us fix a scenario s = {m1; k1, ..., k0.1`},

and let us estimate the measure of the set T (s), T (s) := {t ∈ (0, 1) : ∃y, y2 = ty1, y1 ∈

[Lm1−1, Lm1) such that [0, `] \Zy = {k1, . . . , k0.1`}. To do that for this fixed scenario we

fix a net. To explain what is a net we fix

a :=

[ log 100
η

logL

]
+ 1 ,

where η = C τ and C is an absolute constant to be chosen soon.

A net is a collection N(s) := {n1, . . . , nj}, n1 < n2 < . . . , where every ni is not among

51



kj included in the scenario, j ≥ 3`
4a + 1, and

ni+1 − ni ≥ 2a .

Given a scenario it is always possible to built a net. In fact we just delete from [0, `] the

numbers k1, ..., k0.1` belonging to the scenario, we are left with at least 0.9` numbers. We

choose an arithmetic progression with step a (enumerating them anew first). This arithmetic

progression will be long enough, its length j ≥ 3`
4a because after eliminating k1, ..., k0.1` we

still have at least 0.9` numbers left. We mark the numbers of this progression. Then we put

back k1, ..., k0.1`. The marked numbers will form our net.

If t ∈ T (s) then there exists y = (y1, ty1) as above, in particular,

dist(Lni y,Z2) ≤ 10τ ` , ∀ni ∈ N(s) .

Let us write that then there exist integers p1 ≤ q1: |Ln1y1−q1| < 10τ , |Ln1y2−p1| < 10τ ,

so ∣∣∣∣t− p1
q1

∣∣∣∣ =

∣∣∣∣Ln1y2
Ln1y1

−
p1
q1

∣∣∣∣ =

∣∣∣∣Ln1y2 − p1 + p1
Ln1y1 − q1 + q1

−
p1
q1

∣∣∣∣
∣∣∣∣(Ln1y2 − p1 + p1)q1 − (Ln1y1 − q1 + q1)p1

(Ln1y1 − q1 + q1)q1

∣∣∣∣ ≤ |Ln1y2 − p1||q1|+ |L
n1y1 − q1||p1|

(q1 − 10τ)q1

≤ 40τ
1

q1
.

As promised we choose C: C = 40, η := 40τ and we get

∃p1 ≤ q1 :

∣∣∣∣t− p1
q1

∣∣∣∣ ≤ η
1

q1
. (5.17)
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Next we choose integers p2 ≤ q2: |Ln2y1 − q2| < 10τ , |Ln2y2 − p2| < 10τ and obtain

∃p2 ≤ q2 :

∣∣∣∣t− p2
q2

∣∣∣∣ ≤ η
1

q2
. (5.18)

Notice also that because of |Ln1y1 − q1| < 10η, |Ln2y1 − q2| < 10η, y1 ≥ 1/
√

2, and

smallness of τ , and the fact that n2 − n1 ≥ 2a, we get

q2
q1
≥ La ≥ 100

η
. (5.19)

We continue in the same vein, i = 2, . . . , j − 1 ≥ 3`
4a :

∃pi ≤ qi :

∣∣∣∣t− pi
qi

∣∣∣∣ ≤ η
1

qi
. (5.20)

Notice also that because of |Ln1y1 − q1| < 10η, |Ln2y1 − q2| < 10η, y1 ≥ 1/
√

2, and

smallness of τ , and the fact that n2 − n1 ≥ 2a, we get

qi+1
qi
≥ La ≥ 100

η
. (5.21)

Inequality (5.17) gives that |T (s)| ≤ η, inequalities (5.17) and (5.18) in conjunction with

(5.19) give |T (s)| ≤
(

1 + 1
100

)
η2, similarly all inequalities (5.20), (5.21) together give

|T (s)| ≤ (1.01η)
3`
4a ≥ e0.1 `L

−3
4`(1−ε(η))

.
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Here we used of course that a :=

[
log 100

η
logL

]
+ 1. Finally, if η is sufficiently small we have

|T (s)| ≤ L
−2

3` . (5.22)

Let S denote the set of all scenarios. Now we want to calculate the number of scenarios.

This is easy:

#S ≤ m ·
(

`

0.1`

)
≤ ` ·

(
10

9

)0.9`
· 100.1` .

We just proved that the measure of the set of all t ∈ (0, 1) such that one has (5.15)

∃y ∈ Rt, : y1 ∈ [
1√
2
, Lm] :

∑̀
k=0

dist(Lk y,Z2) ≤ τ `

can be estimated as

≤ ` ·
(

10

9

)0.9`
· 100.1` · L−

2
3` ≤ L−`/2 .

Proposition 25 is proved. Except for a small set of exceptional directions, the uniform

bound |P[1,t(x)| < e−τ` holds.

Here is the second claim of the subsection:

Proposition 26.

t ∈ E ⇒
∫
SSV (t)

|P]1,t(x)|2dx ≤ C′′K Lm.

We will see in Section 5.3 that for each t, SSV (t) is contained in C · Lm neighborhoods

of size Ln−m−` around the complex zeroes λj of P2.
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Fix t. Let

Ij = [λj − L
n−m−`, λj + Ln−m−`], (5.23)

where SSV (t) ⊆
⋃
j

Ij (5.24)

Choose j for which
∫
Ij
|P]1,t(x)|2dx is maximized. Then

∫
SSV (t)

|P]1,t(x)|2dx ≤ CLm
∫
Ij
|P]1,t(x)|2dx ≤ CLm(L`+m−n)2

∫
Ij
|
n−m−`∑
k=0

e
iαjx|2.

As |Ij | ≤ 2 · Ln−m−`, so Lemma 40 and the definition of E give us Proposition 26.

The estimate for t ∈ Ẽ \H follows. If |E| ≥ 1/K,K = Lm/2, |Ẽ| > 1/2K, and we also

just proved that |H| ≤ L−`/2, ` = αm with large α, we have a set E ⊂ Ẽ \H, E > 1/4K,

such that for every t ∈ E

∫
SSV (t)

|P1(r)|2 dr ≤ L−`
∫
SSV (t)

|P]1,t(x)(r)|2 dr ≤ C′′K Lm · L−αm .

So we proved ∫
SSV (t)

|P1(r)|2 dr ≤ c Lm (5.25)

with c as small as we wish. In particular, Proposition 24 is completely proved.

5.2 Two combinatorial lemmas

In this section, we will prove two combinatorial lemmas. The objective in each case is

to rigorously estimate one quantity by another, clearly related, quantity. The two, taken
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together, reduce the problem of finding an upper bound in Buffon’s needle problem to the

problem of finding a bound on |E|.

For this section, regard the set E from Section 5.1 as parameterized by θ, and use the

variable x instead of s on the non-Fourier side, since we will not work on the Fourier side at

all during this section.

5.2.1 |A∗K,N,θ| vs. |LNKβ ,θ|

In this section, we show how Theorem 13 follows from Theorem 21. The theorem we prove

here is the big brother of the micro-theorem converse.

First, let us define

LN,θ := projθJN. (5.26)

Theorem 27. Let β > 1 (we used β = 3 in the previous section). Let K and N be large

enough, possibly depending on L. If t /∈ E (see definition (5.4) and use τ > 2 as suggested),

then |L
NKβ,θ

| ≤ C
K .

Proof. Let us use θ instead of t and use x for the space variable on the non-Fourier side,

since we do not use Fourier analysis in this proof. Fix θ, and for j ∈ N, let Fj := A∗K,jN,θ =

{x : f∗jN (x) ≥ K}. Let F := F1. θ /∈ E means |F | ≥ K−τ , where τ > 2 is fixed.

Note that this theorem is the sophisticated analog of the micro-theorem converse of

Chapter 1.

Consider the discs of JN . All discs are white initially. Now each disc lying above any

x ∈ F green. We will now consider the sets JjN , for j = 1, 2, ... and label these discs as

green or white according to these rules:

1) If a disc in JjN is green, its offspring in J(j+1)N are all green. 2) If a disc in JjN is
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white, its offspring in J(j+1)N are white except for those discs which are self-similar copies

of the discs which were green in JN .

Let Gj denote the set of green discs in JjN . Note that θ /∈ E tells us that |G1| is fairly

large - let us prove a statement to this effect. Consider φj(x) :=
∑
D∈Gj χprojθ(D), and

let φ(x) := φ1(x).

Proposition 28. ⋃
D∈Gj

D ⊆ {x :Mφj > K/4}

Proof. When a disc D in Gj with projected center at x0 has white ancestor in Gj−1 – that

is, it is “green for the first time” – it is clear thatMφj > K/4 by taking the average of φj on

[x0 − 2L−jN , x0 + 2L−jN ]. In fact, the L1 mass of the green discs above such an interval

cannot decrease below this bound, simply because the offspring have L1 mass summing to

that of its parent, and the interval contains all of these K discs entirely.

Proposition 29. F ⊆ {x : Mφ ≥ K/2}, where M is the (uncentered or centered; we will

take it to be centered) Hardy-Littlewood maximal operator.

Proof. Fix x ∈ F . By definition, ∃n < N such that fn(x) ≥ K. Thus the interval [x −

2L−n, x + 2L−n] contains the projections of K green discs of Jn, i.e., φ(x) ≥ K. In fact,

the total L1 mass of the sum of characteristic functions of the children of these projected

green discs remains constant as n increases. So clearly

Mφ(x) ≥ Ln

4

∫ x+2L−n

x−2L−n
fN,θ(x)dx ≥ K2L−nL

n

4
≥ K/2.
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Of course one sees where this is headed:

|F | ≤ |{x :Mφ(x) > K/2}| . 1

K
||φ||1 =

2

K
L−N |G1|. (5.27)

Since θ /∈ E, this immediately proves:

Proposition 30.

|G1| & K1−τLN .

�

Let Pj denote |Gj | ·L−jN , that is, the proportion of discs of JjN which are green. Note

that Qj := 1 − Pj =

(
1 − |G1|

LN

)j
≤
(

1 − cK1−τ
)j

=

(
1 − cjK1−τ

j

)j
≈ e−cjK

1−τ
.

Note that ∣∣∣∣ ⋃
W a white disc of JjN

projθ(W )

∣∣∣∣ ≤ 2Qj . e−cjK
1−τ

.

Also, we saw already that the remaining discs of D of JjN are exactly the green discs,

i.e., D ∈ Gj . Using Proposition 28, we see that

∣∣∣∣ ⋃
D∈Gj

projθ(D)

∣∣∣∣ ≤ |{x :Mφj(x) > K/2}| . 1

K
||φj ||1 ≤

2

K
.

In particular, if j > Kτ−1+ε = Kβ , there are few enough white discs, and all is well.

This completes the proof of Theorem 27.
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5.2.2 supn≤N ||fn,θ||22 vs. |A∗K,N,θ|

Theorem 31. Let θ ∈ E. Then

max
n:0≤n≤N

‖fn,θ‖
2
L2(R)

≤ C K .

To prove this we first need the following claim, which is the main combinatorial assertion

of this subsection. It repeats the one in [18] but we give a slightly different proof.

We fix a direction θ, we think that the line `θ on which we project is R. If x ∈ R then

by Nx we denote the line orthogonal to R and passing through point x, we call Nx a needle.

Recall that A∗K,N,θ := {x ∈ R : f∗N,θ(x) > K}. When N and θ are understood from

context, we can write FK := A∗K,N,θ.

Theorem 32. There exists an absolute constant C such that for any large enough K, M ,

and N ,

|F2LKM | ≤ CLK |FK | · |FM | . (5.28)

Proof. One can see this by considering maximal discs above F2LK . Suppose x ∈ F2LK .

Then there are at least 2LK “light green” (relative to x and n) discs of some generation

n ≤ N above x; call these Lx,n. In generation n− 1, there are still at least 2K discs above

x - namely, the fathers of the 2LK discs of generation n. Keep going back one generation

until you reach j0 = j0(x), the largest j < n such that the generation j ancestors of the

light green discs of Lx,n are fewer than 2LK in number. Call these discs of generation

j0(x) the green discs (relative to x and n), or Gx,n. Then |Gx,n| ≥ 2K. Form the union

G = ∪x,nGx,n of green discs. The discs of this union are just called green.

Each green disc is maximal for some (x, n), but it may be the case that a green disc
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above (x1, n1) is properly contained in a green disc above (x2, n2). We want our maximal

discs to be truly maximal, so mark as dark green all green discs which are not sub-discs of

a larger green disc. Call the family of dark green discs D.

The largest dark green disc has some radius L−n0. Call one such dark green disc Q0.

Q0 ∈ Gx,n for some (x, n), so it belongs to a stack of K or more green discs. In fact, they

are all dark green by the maximality of Q0.

Let I0 = 20projθ(Q0), where the rescaling is concentric. Consider all Q ∈ D whose

projection intersects I0. Call this set of such Q by the name F(Q0). For all x ∈ R, the needle

at x intersects fewer than 2LK discs from the set F(Q0) (Otherwise, larger green discs could

be found by taking ancestors, contradiction). Since F(Q0) lives above I0+[−2L−n0 , 2Ln0],

|F(Q0)| < 100LK.

Let x0 be the projected center of Q0. Let J0 := [x0, x0+L−n0] or J0 := [x0−L
−n0 , x0],

whichever contains at least K projected centers of dark green discs. Thus J0 ⊆ FK and

|J0| ≥ L−n0 & |I0|.

Lemma 33. |F2LKM ∩ I0| . KL|I0||FM | . KL|J0||FM |

Proof. Let x ∈ F2LKM ∩ I0. Note that F2LKM ∩ I0 ⊆ F2LK ∩ I0 ⊆ F(Q0). So in

generation n0, x has fewer than 2LK discs above it, whose projected lengths sum to at most

cKL|I0|. For some n ≤ N , the stack must reach height 2LKM , which means that one of

the discs of F(Q0) must give birth to a stack of M discs. That is, x must belong to one of

≤ 2KL self-similar copies of FM living inside of F(Q0). The lemma follows.

To finish the proof, one needs to induct. That is, one needs intervals I1, I2, ... covering

F2LKM such that comparable subintervals J1, J2, ... can be substituted for I0 and J0 in

the statement of this last lemma. This, in fact, can be done; one deletes
⋃s
r=1 Ir from
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F2KL and starts the maximality argument over again to get Is+1 and Js+1. Note that

by maximality, it is impossible for the sets Ir to overlap too much; each is centered outside

of the previous, and they only shrink. The problem is finite, so in fact all of F2LKM is

exhausted in this way.

This completes the proof of Theorem 32.

Now we can prove Theorem 31.

Proof. Let Ej := {x : fn,θ(x) > (2LK)j+1}, j = 0, 1, ..... We know by Theorem 32 that

|Ej | ≤ (CLK)j |E0|
j+1 .

Hence, ∫
fn,θ(x)2 dx ≤ 2LK

∫
fn,θ(x) dx+

∞∑
j=0

∫
Ej\Ej+1

fn,θ(x)2 dx

≤ 2LK

∫
fn,θ(x) dx+

∞∑
j=0

(2LK)j+2
∫
Ej\Ej+1

fn,θ(x) dx

≤ 2CLK +
∞∑
j=0

(2LK)j+2 (CLK)j |E0|
j+1 .

If |{x : f∗N (x) > K}| ≤ 1/Kτ , τ > 2, then for all n ≤ N we can immediately read the

previous inequality as ∫
fn,θ(x)2 dx ≤ C(τ)K .
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5.3 Controlling SSV (t)

Now we have to consider P2,t(r) = φt(r)φt(L
−1r) · · · · · φt(L−mr). We are interested in

the set

SSV (t) := {r ∈ [1, Lm] : |P2,t(r)| ≤ L−Am
2
} .

We will be using so-called Turan’s lemma:

Lemma 34. Let f(x) =
∑L
l=1 cle

λlx, let E ⊂ I, I being any interval. Then

sup
I
|f(x)| ≤ emax |<λn| |I|

(
A|I|
|E|

)L
sup
E
|f(x)| .

Here A is an absolute constant.

In this form it is proved by F. Nazarov [21].

Now let us consider any square Q = [x′ − 1, x′ + 1]× [−1, 1]. We call 1
2Q the concentric

square of half the size.

Lemma 35. With uniform constant C depending only on L one has

sup
Q
|φt(z)| ≤ C sup

1
2Q

|φt(z)| .

Proof. Let z0 = x0 + iy0 is a point of maximum in the closure of Q. We first want to

compare |f(z0)| and |f(x0)|. Consider fx0(y) := φt(x0 + iy). Notice that uniformly in Q

and x0

|f ′x0
(y)| ≤ C(L) .

This means that |fx0(y)| ≥ 1
2 |fx0(0)| on an interval of uniform length c(L).
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Notice also that the exponents λl(t), l = 1, . . . , L, encountered in φt are all uniformly

bounded. Then applying Lemma 34 we get

|φt(z0)| = |fx0(y0)| ≤ C′(L)|fx0(0)| .

Now consider F (x) = φt(x). We want to compare F (x0) = fx0(0) = φt(x0) with

max
[x′−1

2 ,x
′+1

2]
|F (x)|.

By Lemma 34 we get again

|fx0(0)| = |F (x0)| ≤ sup
[x′−1,x′+1]

|F (x)| ≤ C′′(L) sup
[x′−1/2,x′+1/2]

|F (x)| ≤ C′′(L) sup
1
2Q

|φt(z)|

Combining the last two display inequalities we get Lemma 35 completely proved.

Lemma 36. With uniform constant C depending only on L (and not on m) one has

sup
Q
|φt(L

−kz)| ≤ C sup
1
2Q

|φt(L
−kz)| , k = 0, . . . ,m .

The proof is exactly the same. We just use L−kλl(t), l = 1, . . . , L, encountered in

φt(L
−k·) are all uniformly bounded.

By complex analysis lemmas from Section 5.4 we know that Lemma 36 implies that

every 1
2Q has at most M (depending only on L) zeros of φt(z). And if we denote them by
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µ1, . . . , µM then

{x ∈ 1

2
Q ∩ R : |φt(x)| ≤ L−M`} ⊆

M⋃
i=1

B(µi, L
−`) . (5.29)

Consider µ1, . . . , µS being all zeros of P2,t in [1/2, Lm + 1]× [1/2, 1/2]. By abovemen-

tioned lemmas from Section 5.4 and by Lemma 36 we get that

S ≤M(L)Lm .

From (5.29) it is immediate that

{x ∈ [1, Lm] : |P2,t(L
−(n−m)x)| ≤ L−M`m} ⊂

M Lm⋃
i=1

B(µi, L
−`) . (5.30)

Changing the variable y = Ln−mx we get the structure of the set of small values used

above during the proof of Proposition 26:

SSV (t) ⊂ ∪C L
m

i=1 Ii , (5.31)

where each interval Ii has the length 2Ln−m−`.

In this section, we also include Lemmas 37 and 38. Given a bounded holomorphic function

on the disc, its supremum, and an interior non-zero value, these lemmas bound the number

of zeroes and contain the set of small values within certain neighborhoods of these zeroes.

They are somewhat standard, but are included for completeness.
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5.3.1 A Blaschke estimate

Lemma 37. Let D be the closed unit disc in C. Suppose φ is holomorphic in an open

neighborhood of D, |φ(0)| ≥ 1, and the zeroes of φ in 1
2D are given by λ1, λ2, ..., λM . Let

C = ||φ||L∞(D). Then M ≤ log2(C).

Proof. Let

B(z) =
M∏
k=1

z − λk
1− λ̄kz

.

Then |B| ≤ 1 on D, with = on the boundary. If we let g :=
φ
B , then g is holomorphic and

nonzero on 1
2D, and |g(eiθ)| ≤ C ∀θ ∈ [0, 2π]. Thus |g(0)| ≤ C by the maximum modulus

principle. So we have

C ≥ |g(0)| = |φ(0)|
|B(0)|

≥
M∏
k=1

1

|λk|
≥ 2M.

Lemma 38. In the same setting as Theorem 37, the following is also true for all δ ∈ (0, 1/3):

{z ∈ 1
4D : |φ| < δ} ⊆

⋃
1≤k≤M B(λk, ε), where

ε :=
9

16
(3δ)1/M ≤ 9

16
(3δ)1/log2(C).

Proof. Let δ ∈ (0, 1/3), and let z ∈ 1
4D such that |z − λk| > ε ∀k. Note that g is harmonic

and nonzero on 1
2D with |g(0)| ≥ 2M . Thus Harnack’s inequality ensures that |g| ≥ 1

32M

on 1
4D, so there

|φ(z)| ≥ |g(z)B(z)| ≥ 1

3
2M

M∏
k=1

|
z − λk
1− λ̄kz

| ≥ (
16ε

9
)M

1

3
= δ.
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We can conclude the proof by the contrapositive.

5.4 A localized upper bound on ||P1||2.

By manipulating some estimates with Poisson kernels, it is possible to localize information

about ||fn||2 to say something about ||P1 · χI ||
2 for an arbitrary interval I. We used this

to show that P1 doesn’t “live too much on small intervals,” in particular, near the origin,

[0, Ln−m] - this lemma is used (in the form of Corollary 41) to get (5.9).

The first claim, Lemma 39, uses the Carleson imbedding theorem. It can be skipped,

though, as a stronger version, Lemma 40, is proved using general H2 theory on the upper

half-plane C+. The Carleson imbedding theorem and some Hp theory can be found in [10]

and its references.

Lemma 39. Let j = 1, 2, ...k, cj ∈ C, |cj | = 1, and αj ∈ R. Let A := {αj}kj=1. Then

∫ 1

0
|
k∑
j=1

cje
iαjy|2dy ≤ C k · sup

I a unit interval
#{A ∩ I} .

Proof. Let A1 := {µ = α + i : α ∈ A}. Let ν :=
∑
µ∈A1

δµ. This is a measure in C+.

Obviously its Carleson constant

‖ν‖C := sup
J⊂R, J is an interval

ν(J × [0, |J |])
|J |

can be estimated as follows

‖ν‖C ≤ 2 sup
I a unit interval

#{A ∩ I} . (5.32)

66



Recall that

∀f ∈ H2(C+)

∫
C+
|f(z)|2 dν(z) ≤ C0 ‖ν‖C‖f‖

2
H2 , (5.33)

where C0 is an absolute constant. Now we compute

∫ 1

0
|
k∑
j=1

cje
iαjy|2dy ≤ e2

∫ 1

0
|
k∑
j=1

cje
i(αj+i)y|2dy ≤

e2
∫ ∞

0
|
k∑
j=1

cje
i(αj+i)y|2dy = e2

∫
R
|
∑
µ∈A1

cµ

x− µ
|2 ,

where cµ := cj for µ = αj + i. The last equality is by Plancherel’s theorem.

We continue

∫
R
|
∑
µ∈A1

cµ

x− µ
|2 = sup

f∈H2(C+), ‖f‖2≤1

∣∣∣∣〈f, ∑
µ∈A1

cµ

x− µ
〉
∣∣∣∣2 =

4π2 sup

f∈H2(C+), ‖f‖2≤1

|
∑
µ∈A1

cµf(µ)|2 ≤ C #{A1} sup

f∈H2(C+), ‖f‖2≤1

∑
µ∈A1

|f(µ)|2 ≤

C #{A} sup

f∈H2(C+), ‖f‖2≤1

∫
C+
|f(z)|2 dν(z) ≤ 2C0C #{A} sup

I a unit interval
#{A ∩ I} .

This is by (5.39) and (5.32). The lemma is proved.

Now we are going to prove a stronger assertion by a simpler approach. This stronger

assertion is what is used in the main part of the article.
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Lemma 40. Let j = 1, 2, ...k, cj ∈ C, |cj | = 1, and αj ∈ R. Let A := {αj}kj=1. Then

Suppose ∫
R

(
∑
α∈A

χ[α−1,α+1](x))2 dx ≤ S , (5.34)

Then there exists an absolute constant C such that

∫ 1

0
|
∑
α∈A

cαe
iαy|2 dy ≤ C S . (5.35)

Of course, one can change variables and get:

Corollary 41. Let j = 1, 2, ...k, cj ∈ C, |cj | = 1, and αj ∈ R. Let A := {αj}kj=1, and let

δ > 0. Suppose ∫
R

(
∑
α∈A

χ[α−δ,α+δ](x))2 dx ≤ S , (5.36)

Then there exists an absolute constant C such that for any a ∈ R

∫ a+δ−1

a
|
∑
α∈A

cαe
iαy|2 dy ≤ C S /δ2. (5.37)

Remark. Lemma 40 is obviously stronger than Lemma 39. In fact, let S0 be the maximal

number of points A in any unit interval. Then

f(x) :=
∑
α∈A

χ[α−1,α+1](x) ≤ 2S0.

Now
∫
R f2(x)dx ≤ 4kS0, where k as above is the cardinality of A. We can put now

S := 4kS0, apply Lemma 40 and get the conclusion of Lemma 39. The proof of Lemma 40

does not require the Carleson imbedding theorem. Here it is.

68



Proof. Using Plancherel’s theorem we write

∫ 1

0
|
∑
α∈A

cαe
iα y dy|2 ≤ e2

∫ 1

0
|
∑
α∈A

cαe
i(α+i) y dy|2 ≤ e2

∫ ∞
0
|
∑
α∈A

cαe
i(α+i) y dy|2 =

e2
∫
R

∣∣∣∣ ∑
α∈A

cα
α + i− x

∣∣∣∣2 dx .
Identify z = x + iy in the usual way (x, y ∈ R). Let C+ = {x + iy : y > 0}. Let H2

0 be

the space of measurable functions f : C+ → C such that supy>0
∫
R |f(x + iy)|2dx < ∞.

Let H2 be the subspace of H2
0 consisting of analytic functions. H2

0 is a Hilbert space:

< f1, f2 >:= lim
y→0+

∫
R
f1(x+ iy)f2(x+ iy)dx. (5.38)

It is a standard fact2 that H2 is orthogonal to H2, implying in particular that if f1, f2

are analytic in C+ with
∫
R |fj(x+ iy)|2dx < M for all y > 0 and for j = 1, 2, then

0 =< f1, f2 >=

∫
R
f1(x+ iy)f2(x+ iy)dx ∀y > 0. (5.39)

In our application, we can use

f1(z) =
∑
α∈A

cα
α− i− z

, f2(z) =
∑
α∈A

c̄α
α− i− z

We can just evaluate at y = 0 directly. Note that (5.39) says that < f1− f̄2, f1− f̄2 >=

||f1||2 + ||f2||2 ≥ ||f1||2.

2f1f2 is analytic in this case, and by conformal identification of C+ ∪∞ with the unit
disc, one sees that the complex integral along a circle is equal 0.
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Then we get

∫
R

∣∣∣∣ ∑
α∈A

cα
α + i− x

∣∣∣∣2 dx ≤ ∫R
∣∣∣∣ ∑
α∈A

cα
α− i− x

−
∑
α∈A

cα
α + i− x

∣∣∣∣2 dx

=

∫
R

∣∣∣∣ ∑
α∈A

−2icα

1 + (α− x)2

∣∣∣∣2 dx = 4π2
∫
R

∣∣∣∣ ∑
α∈A

cαP1(α− x)

∣∣∣∣2 dx ,
where P1 is the Poisson kernel in the upper half-plane C+ at height h = 1:

Ph(x) :=
1

π

h

h2 + x2
.

We continue by noticing that P1 ∗ χ[λ−1,λ+1](x) ≥ cP1(λ − x) with absolute positive

c. This is an elementary calculation, or, if one wishes, Harnack’s inequality. Now we can

continue ∫ 1

0
|
∑
α∈A

cαe
iα y dy|2 .

∫
R

∣∣∣∣(P1 ∗
∑
α∈A

cαχ[α−1,α+1])(x)

∣∣∣∣2 dx .
Now we use the fact that f → P1 ∗ f is a contraction in L2(R). So

∫ 1

0
|
∑
α∈A

cαe
iα y dy|2 .

∫
R
|
∑
α∈A

cαχ[α−1,α+1](x)|2 dx . S .

The lemma is proved.

5.5 Discussion

The reason we were able to prove the stronger estimate for the Sierpinski gasket is exactly

given by (4.1) and (4.2). They are a quantified version of the fact that the three-term sum
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ϕ(z) = 1 + eiz + eitz is zero if and only if the summands are e
2
3jπi, j = 0, 1, 2, and that for

such z, ϕ(3kz) = 3 for all integers k ≥ 1. An alternate argument using this fact in this form

is employed in [7]. Both versions of this fact we call by the general term “analytic tiling”.

It is not a tiling of the interval by projected Cantor squares as in [13], but there is a certain

tiling pattern to the zeroes of the Fourier transform.

However, there cannot be such a thing in the general case. Suppose we had 5 self-

similarities, and that for for some direction θ, we had φθ(x0) = 1+(−i)+i+e2πi/3+e4πi/3 =

0. Then clearly, taking fifth powers of the summands results in another zero with exactly the

same summands, in complete and utter contrast to the three-point case. Similar examples

using partitions into relatively prime roots of unity exist for numbers other than 5. In

fact, there are examples where L = 5 and for θ in a pathological set of size >> L−m,

|{x ∈ [Ln−m,Ln] :
∏n
k=n−log n |ϕθ(x)| < e−cm}| > Ln−

√
log n. That is, SSV (t) takes

up a proportion of I much larger than one that is exponentially small in the number of terms

in the product. By taking 1
m log |P2|, one gets a certain ergodic sum which one may hope

has nice properties, but for some sets J , such nice properties fail for a set of directions far

too large to ignore.

It is not yet known whether some separate argument is valid for this new set of “bad

directions.” One thought is that perhaps there are “structured” and “pseudo-random” di-

rections, and that a separate argument works for each. In the latter case, a pseudo-random

analog of the large deviations theory for i.i.d. random variables may hold. But much remains

to be seen.

For example, if one considers Kn as in [18], one gets ϕθ(z) = 1+eiπz+eiλz+ei(λ+π)z ,

which has the zero z = 1. Then ϕθ(4k) = 2(1+cos(4kλ)) for k > 0. λ depends continuously
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on θ, and for fixed λ such an ergodic sampling results in a sequence ak := ϕ(4k), and either:

1: ak is eventually periodic and non-zero,

2: ak takes values other than 4 only finitely often,

or 3 (the case for almost every λ): 4kλ mod 2π evenly samples [0, 2π] over the long term,

with long-term average 1
N
∑N
k=1 log ak → log 2 as N →∞.

This regularity agrees with the result [18], which already proved a result without using

ergodic theory or large deviation theory. There was a θ and x separation of variables, and

the zeroes obeyed an “analtyic tiling” property like the one for the gasket.
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Chapter 6

Epilogue

This thesis was written by a minotaur in a manner compliant with federal policies on the

use of human and/or animal subjects in research projects. No harm was sustained by the

minotaur except for maybe some loss of sleep and the formation of a coffee dependence.
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Figure 6.1: Minotaur.
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